Skip to content

Commit

Permalink
update partner link (#334)
Browse files Browse the repository at this point in the history
  • Loading branch information
septemberfd authored Jun 4, 2024
1 parent 41303aa commit 72edf87
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions blog/en/introducing-milvus-lite.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ id: introducing-milvus-lite.md
title: 'Introducing Milvus Lite: Start Building a GenAI Application in Seconds'
author: Jiang Chen
date: 2024-05-30
cover: assets.zilliz.com/1_10011_283380bc9b.png
cover: assets.zilliz.com/introducing_Milvus_Lite_76ed4baf75.jpeg
tag: News
tags: Milvus, Vector Database, Open Source, Data science, Artificial Intelligence, GenAI developers, Retrieval Augmented Generation, RAG
recommend: true
Expand Down Expand Up @@ -48,7 +48,7 @@ For scalability, an AI application developed with Milvus Lite can easily transit

## Integration with AI Development Stack

In addition to introducing Milvus Lite to make vector search easy to start with, Milvus also integrates with many frameworks and providers of the AI development stack, including [LangChain](https://python.langchain.com/v0.2/docs/integrations/vectorstores/milvus/), [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/vector_stores/MilvusIndexDemo/), [Haystack](https://haystack.deepset.ai/integrations/milvus-document-store), [Voyage AI](https://milvus.io/docs/integrate_with_voyageai.md), [Ragas](https://milvus.io/docs/integrate_with_ragas.md), [Jina AI](https://milvus.io/docs/integrate_with_jina.md), [DSPy](https://dspy-docs.vercel.app/docs/deep-dive/retrieval_models_clients/MilvusRM), [BentoML](https://www.bentoml.com/blog/building-a-rag-app-with-bentocloud-and-milvus-lite), [WhyHow](https://chiajy.medium.com/70873c7576f1), [Relari AI](https://blog.relari.ai/case-study-using-synthetic-data-to-benchmark-rag-systems-be324904ace1), [Airbyte](https://docs.airbyte.com/integrations/destinations/milvus), [HuggingFace](https://milvus.io/docs/integrate_with_hugging-face.md) and [MemGPT](https://memgpt.readme.io/docs/storage#milvus). Thanks to their extensive tooling and services, these integrations simplify the development of AI applications with vector search capability.
In addition to introducing Milvus Lite to make vector search easy to start with, Milvus also integrates with many frameworks and providers of the AI development stack, including [LangChain](https://python.langchain.com/v0.2/docs/integrations/vectorstores/milvus/), [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/vector_stores/MilvusIndexDemo/), [Haystack](https://haystack.deepset.ai/integrations/milvus-document-store), [Voyage AI](https://blog.voyageai.com/2024/05/30/semantic-search-with-milvus-lite-and-voyage-ai/), [Ragas](https://milvus.io/docs/integrate_with_ragas.md), [Jina AI](https://jina.ai/news/implementing-a-chat-history-rag-with-jina-ai-and-milvus-lite/), [DSPy](https://dspy-docs.vercel.app/docs/deep-dive/retrieval_models_clients/MilvusRM), [BentoML](https://www.bentoml.com/blog/building-a-rag-app-with-bentocloud-and-milvus-lite), [WhyHow](https://chiajy.medium.com/70873c7576f1), [Relari AI](https://blog.relari.ai/case-study-using-synthetic-data-to-benchmark-rag-systems-be324904ace1), [Airbyte](https://docs.airbyte.com/integrations/destinations/milvus), [HuggingFace](https://milvus.io/docs/integrate_with_hugging-face.md) and [MemGPT](https://memgpt.readme.io/docs/storage#milvus). Thanks to their extensive tooling and services, these integrations simplify the development of AI applications with vector search capability.

And this is just the beginning—many more exciting integrations are coming soon! Stay tuned! 

Expand Down

0 comments on commit 72edf87

Please sign in to comment.