Skip to content

Commit

Permalink
Update causica version to 0.4.1 (#100)
Browse files Browse the repository at this point in the history
Update to "Update causica version to 0.4.1"

Co-authored-by: Wenbo Gong <[email protected]>
  • Loading branch information
WenboGong and WenboGong authored Mar 15, 2024
1 parent 57eb8e4 commit 4934a57
Show file tree
Hide file tree
Showing 33 changed files with 7,681 additions and 1,467 deletions.
11 changes: 4 additions & 7 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -9,22 +9,19 @@ RUN conda install anaconda-clean && \
rm -rf /opt/miniconda

RUN apt-get update && \
apt-get install -y graphviz-dev python3-dev && \
apt-get install -y graphviz-dev python3-dev python3-pip && \
apt-get clean -y && \
rm -rf /var/lib/apt/lists/* && \
ln -s /usr/bin/python3 /usr/bin/python && \
python -c 'import sys; assert sys.version_info[:2] == (3, 10)'


# Install Poetry to default env (conda)
ENV POETRY_CACHE_DIR="/root/.cache/pypoetry" \
POETRY_HOME="/root/.local/share/pypoetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false \
POETRY_VIRTUALENVS_IN_PROJECT=false \
POETRY_VERSION=1.7.1
ENV PATH="$PATH:$POETRY_HOME/bin"
RUN curl -sSL https://install.python-poetry.org | python3 -
POETRY_VERSION=1.7.1
RUN python -m pip install -U pip setuptools wheel
RUN python -m pip install poetry==$POETRY_VERSION

# Install dependencies separately to allow dependency caching
# Note: Temporarily create dummy content to allow installing the dev dependencies.
Expand Down
2,783 changes: 1,387 additions & 1,396 deletions poetry.lock

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[tool.poetry]
name = "causica"
version = "0.4.0"
version = "0.4.1"
description = ""
readme = "README.md"
authors = ["Microsoft Research - Causica"]
Expand Down
61 changes: 61 additions & 0 deletions research_experiments/scotch/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
# Neural Structure Learning with Stochastic Differential Equations (SCOTCH)
[![Static Badge](https://img.shields.io/badge/paper-SCOTCH-brightgreen?style=plastic&label=Paper&labelColor=violet)
](https://openreview.net/forum?id=V1GM9xDvIY)
[![Static Badge](https://img.shields.io/badge/Team-Causica-blue?style=plastic&label=Team&labelColor=purple)
]((https://www.microsoft.com/en-us/research/project/project_azua/people/))

This repo implements the SCOTCH proposed in the ICLR 2024 paper "Neural Structure Learning with Stochastic Differential Equations".

SCOTCH is a structure learning method using neural stochastic differential equations (SDEs) for temporal data. SCOTCH, designed for the continuous-time processes, outperforms traditional discrete-time models, and is compatible with irregular sampling intervals. SCOTCH combines neural SDEs with variational inference over structures with theoretical guarantees regarding structure identifiability, establishing a new standard for structure learning.

## Dependency
We use [Poetry](https://python-poetry.org/) to manage the project dependencies, they are specified in [pyproject](pyproject.toml) file. To install poetry, run:

```console
curl -sSL https://install.python-poetry.org | python3 -
```
To install the environment, run `poetry install` in the directory of SCOTCH project.

## Prepare the data
To reproduce the experiment results in the [paper](https://openreview.net/forum?id=V1GM9xDvIY), you need to either generate the synthetic data (Lorenz and Yeast glycolysis dataset) or download the raw data and process them (DREAM3 and Netsim dataset).
### Lorenz and Yeast data generation
To generate the synthetic data, run the following command:
```console
python -m scotch.dataset_generation.generate_and_save_data
```
This executes the [generate_and_save_data.py](src/scotch/dataset_generation/generate_and_save_data.py) to generate Lorenz and Yeast datasets with 5 seeds, both normalized and unnormalized data, different sub-sampling rates and different missing data probabilities to mimic irregular sampling intervals. The generated data will be saved in the `./data/lorenz96_processed`.

### DREAM3
We use the DREAM3 dataset from [DREAM challenge](https://gnw.sourceforge.net/dreamchallenge.html#dream3challenge). One can download the zip file and extract the content to the `./data`.

### Netsim
One can download the Netsim dataset from [Netsim](https://www.fmrib.ox.ac.uk/datasets/netsim/), and unzip the file to the `./data`. Then, specify the path to the `sim3.mat` in the file [generate_and_save_data.py](src/scotch/dataset_generation/generate_and_save_data.py#L59) and set `gen_netsim_data = True`. Run the following command to process the data:
```console
python -m scotch.dataset_generation.generate_and_save_data
```
The processed data will be saved in `./data/netsim_processed`. If this already exists, it will override the data in `./data/netsim_processed`.

## Run experiments
In the [src/scotch/experiments](src/scotch/experiments/) directory, we provide scripts to run the experiments for each datasets reported in the paper (Lorenz, Yeast, DREAM3 and Netsim).

For `Ecoli1` dataset of DREAM3, run the following command:
```console
python -m scotch.experiments.dream3 --dimension 100 --name Ecoli1 --epoch 40000 --lr 0.001 --sparsity 200 --dt 0.05 --seed 0 --normalize --experiment_name Ecoli1_exp --deci_diffusion --res_connection --sigmoid_output --lr_warmup 100
```
For other DREAM3 datasets, please refer to paper for hyperparameters.

For `Netsim` dataset, run the following command:
```console
python -m scotch.experiments.netsim --epoch 20000 --lr 0.001 --sparsity 1000 --dt 0.05 --seed 0 --res_connection --deci_diffusion --lr_warmup 100 --sigmoid_output --missing_prob 0.1 --experiment_name Netsim_missing_0.1
```

For `Lorenz` dataset, run the following command:
```console
python -m scotch.experiments.lorenz --epoch 40000 --lr 0.003 --sparsity 500 --dt 1 --seed 0 --experiment_name Lorenz_missing_0.3 --res_connection --deci_diffusion --lr_warmup 100 --sigmoid_output --missing_prob 0.3 --num_time_points 100 --train_size 10
```

For `Yeast` dataset, run the following command:
```console
python -m scotch.experiments.yeast --epoch 40000 --lr 0.001 --sparsity 200 --dt 1 --seed 0 --experiment_name Yeast_exp --res_connection --deci_diffusion --lr_warmup 100 --sigmoid_output --missing_prob 0.0 --num_time_points 100 --train_size 10 --normalize
```

Loading

0 comments on commit 4934a57

Please sign in to comment.