forked from rapidsai/cudf
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Improve the performance of low cardinality groupby (rapidsai#16619)
This PR enhances groupby performance for low-cardinality input cases. When applicable, it leverages shared memory for initial aggregation, followed by global memory aggregation to reduce atomic contention and improve performance. Authors: - Yunsong Wang (https://github.com/PointKernel) - Mike Wilson (https://github.com/hyperbolic2346) Approvers: - David Wendt (https://github.com/davidwendt) - Mike Wilson (https://github.com/hyperbolic2346) - Vyas Ramasubramani (https://github.com/vyasr) URL: rapidsai#16619
- Loading branch information
1 parent
990734f
commit 2e0d2d6
Showing
19 changed files
with
699 additions
and
208 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "compute_aggregations.cuh" | ||
#include "compute_aggregations.hpp" | ||
|
||
namespace cudf::groupby::detail::hash { | ||
template rmm::device_uvector<cudf::size_type> compute_aggregations<global_set_t>( | ||
int64_t num_rows, | ||
bool skip_rows_with_nulls, | ||
bitmask_type const* row_bitmask, | ||
global_set_t& global_set, | ||
cudf::host_span<cudf::groupby::aggregation_request const> requests, | ||
cudf::detail::result_cache* sparse_results, | ||
rmm::cuda_stream_view stream); | ||
} // namespace cudf::groupby::detail::hash |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
#pragma once | ||
|
||
#include "compute_aggregations.hpp" | ||
#include "compute_global_memory_aggs.hpp" | ||
#include "compute_mapping_indices.hpp" | ||
#include "compute_shared_memory_aggs.hpp" | ||
#include "create_sparse_results_table.hpp" | ||
#include "flatten_single_pass_aggs.hpp" | ||
#include "helpers.cuh" | ||
#include "single_pass_functors.cuh" | ||
|
||
#include <cudf/detail/aggregation/result_cache.hpp> | ||
#include <cudf/detail/utilities/vector_factories.hpp> | ||
#include <cudf/groupby.hpp> | ||
#include <cudf/table/table_device_view.cuh> | ||
#include <cudf/types.hpp> | ||
#include <cudf/utilities/span.hpp> | ||
|
||
#include <rmm/cuda_stream_view.hpp> | ||
#include <rmm/device_scalar.hpp> | ||
#include <rmm/device_uvector.hpp> | ||
#include <rmm/exec_policy.hpp> | ||
|
||
#include <cuco/static_set.cuh> | ||
#include <cuda/std/atomic> | ||
#include <thrust/for_each.h> | ||
|
||
#include <algorithm> | ||
#include <memory> | ||
#include <vector> | ||
|
||
namespace cudf::groupby::detail::hash { | ||
/** | ||
* @brief Computes all aggregations from `requests` that require a single pass | ||
* over the data and stores the results in `sparse_results` | ||
*/ | ||
template <typename SetType> | ||
rmm::device_uvector<cudf::size_type> compute_aggregations( | ||
int64_t num_rows, | ||
bool skip_rows_with_nulls, | ||
bitmask_type const* row_bitmask, | ||
SetType& global_set, | ||
cudf::host_span<cudf::groupby::aggregation_request const> requests, | ||
cudf::detail::result_cache* sparse_results, | ||
rmm::cuda_stream_view stream) | ||
{ | ||
// flatten the aggs to a table that can be operated on by aggregate_row | ||
auto [flattened_values, agg_kinds, aggs] = flatten_single_pass_aggs(requests); | ||
auto const d_agg_kinds = cudf::detail::make_device_uvector_async( | ||
agg_kinds, stream, rmm::mr::get_current_device_resource()); | ||
|
||
auto const grid_size = | ||
max_occupancy_grid_size<typename SetType::ref_type<cuco::insert_and_find_tag>>(num_rows); | ||
auto const available_shmem_size = get_available_shared_memory_size(grid_size); | ||
auto const has_sufficient_shmem = | ||
available_shmem_size > (compute_shmem_offsets_size(flattened_values.num_columns()) * 2); | ||
auto const has_dictionary_request = std::any_of( | ||
requests.begin(), requests.end(), [](cudf::groupby::aggregation_request const& request) { | ||
return cudf::is_dictionary(request.values.type()); | ||
}); | ||
auto const is_shared_memory_compatible = !has_dictionary_request and has_sufficient_shmem; | ||
|
||
// Performs naive global memory aggregations when the workload is not compatible with shared | ||
// memory, such as when aggregating dictionary columns or when there is insufficient dynamic | ||
// shared memory for shared memory aggregations. | ||
if (!is_shared_memory_compatible) { | ||
return compute_global_memory_aggs(num_rows, | ||
skip_rows_with_nulls, | ||
row_bitmask, | ||
flattened_values, | ||
d_agg_kinds.data(), | ||
agg_kinds, | ||
global_set, | ||
aggs, | ||
sparse_results, | ||
stream); | ||
} | ||
|
||
// 'populated_keys' contains inserted row_indices (keys) of global hash set | ||
rmm::device_uvector<cudf::size_type> populated_keys(num_rows, stream); | ||
// 'local_mapping_index' maps from the global row index of the input table to its block-wise rank | ||
rmm::device_uvector<cudf::size_type> local_mapping_index(num_rows, stream); | ||
// 'global_mapping_index' maps from the block-wise rank to the row index of global aggregate table | ||
rmm::device_uvector<cudf::size_type> global_mapping_index(grid_size * GROUPBY_SHM_MAX_ELEMENTS, | ||
stream); | ||
rmm::device_uvector<cudf::size_type> block_cardinality(grid_size, stream); | ||
|
||
// Flag indicating whether a global memory aggregation fallback is required or not | ||
rmm::device_scalar<cuda::std::atomic_flag> needs_global_memory_fallback(stream); | ||
|
||
auto global_set_ref = global_set.ref(cuco::op::insert_and_find); | ||
|
||
compute_mapping_indices(grid_size, | ||
num_rows, | ||
global_set_ref, | ||
row_bitmask, | ||
skip_rows_with_nulls, | ||
local_mapping_index.data(), | ||
global_mapping_index.data(), | ||
block_cardinality.data(), | ||
needs_global_memory_fallback.data(), | ||
stream); | ||
|
||
cuda::std::atomic_flag h_needs_fallback; | ||
// Cannot use `device_scalar::value` as it requires a copy constructor, which | ||
// `atomic_flag` doesn't have. | ||
CUDF_CUDA_TRY(cudaMemcpyAsync(&h_needs_fallback, | ||
needs_global_memory_fallback.data(), | ||
sizeof(cuda::std::atomic_flag), | ||
cudaMemcpyDefault, | ||
stream.value())); | ||
stream.synchronize(); | ||
auto const needs_fallback = h_needs_fallback.test(); | ||
|
||
// make table that will hold sparse results | ||
cudf::table sparse_table = create_sparse_results_table(flattened_values, | ||
d_agg_kinds.data(), | ||
agg_kinds, | ||
needs_fallback, | ||
global_set, | ||
populated_keys, | ||
stream); | ||
// prepare to launch kernel to do the actual aggregation | ||
auto d_values = table_device_view::create(flattened_values, stream); | ||
auto d_sparse_table = mutable_table_device_view::create(sparse_table, stream); | ||
|
||
compute_shared_memory_aggs(grid_size, | ||
available_shmem_size, | ||
num_rows, | ||
row_bitmask, | ||
skip_rows_with_nulls, | ||
local_mapping_index.data(), | ||
global_mapping_index.data(), | ||
block_cardinality.data(), | ||
*d_values, | ||
*d_sparse_table, | ||
d_agg_kinds.data(), | ||
stream); | ||
|
||
// The shared memory groupby is designed so that each thread block can handle up to 128 unique | ||
// keys. When a block reaches this cardinality limit, shared memory becomes insufficient to store | ||
// the temporary aggregation results. In these situations, we must fall back to a global memory | ||
// aggregator to process the remaining aggregation requests. | ||
if (needs_fallback) { | ||
auto const stride = GROUPBY_BLOCK_SIZE * grid_size; | ||
thrust::for_each_n(rmm::exec_policy_nosync(stream), | ||
thrust::counting_iterator{0}, | ||
num_rows, | ||
global_memory_fallback_fn{global_set_ref, | ||
*d_values, | ||
*d_sparse_table, | ||
d_agg_kinds.data(), | ||
block_cardinality.data(), | ||
stride, | ||
row_bitmask, | ||
skip_rows_with_nulls}); | ||
extract_populated_keys(global_set, populated_keys, stream); | ||
} | ||
|
||
// Add results back to sparse_results cache | ||
auto sparse_result_cols = sparse_table.release(); | ||
for (size_t i = 0; i < aggs.size(); i++) { | ||
// Note that the cache will make a copy of this temporary aggregation | ||
sparse_results->add_result( | ||
flattened_values.column(i), *aggs[i], std::move(sparse_result_cols[i])); | ||
} | ||
|
||
return populated_keys; | ||
} | ||
} // namespace cudf::groupby::detail::hash |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "compute_aggregations.cuh" | ||
#include "compute_aggregations.hpp" | ||
|
||
namespace cudf::groupby::detail::hash { | ||
template rmm::device_uvector<cudf::size_type> compute_aggregations<nullable_global_set_t>( | ||
int64_t num_rows, | ||
bool skip_rows_with_nulls, | ||
bitmask_type const* row_bitmask, | ||
nullable_global_set_t& global_set, | ||
cudf::host_span<cudf::groupby::aggregation_request const> requests, | ||
cudf::detail::result_cache* sparse_results, | ||
rmm::cuda_stream_view stream); | ||
} // namespace cudf::groupby::detail::hash |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "compute_global_memory_aggs.cuh" | ||
#include "compute_global_memory_aggs.hpp" | ||
|
||
namespace cudf::groupby::detail::hash { | ||
template rmm::device_uvector<cudf::size_type> compute_global_memory_aggs<global_set_t>( | ||
cudf::size_type num_rows, | ||
bool skip_rows_with_nulls, | ||
bitmask_type const* row_bitmask, | ||
cudf::table_view const& flattened_values, | ||
cudf::aggregation::Kind const* d_agg_kinds, | ||
std::vector<cudf::aggregation::Kind> const& agg_kinds, | ||
global_set_t& global_set, | ||
std::vector<std::unique_ptr<aggregation>>& aggregations, | ||
cudf::detail::result_cache* sparse_results, | ||
rmm::cuda_stream_view stream); | ||
} // namespace cudf::groupby::detail::hash |
Oops, something went wrong.