Skip to content

Commit

Permalink
[misc] error early for old-style class (vllm-project#10304)
Browse files Browse the repository at this point in the history
Signed-off-by: youkaichao <[email protected]>
Signed-off-by: Maxime Fournioux <[email protected]>
  • Loading branch information
youkaichao authored and mfournioux committed Nov 20, 2024
1 parent 4a6bba9 commit b29fdb0
Show file tree
Hide file tree
Showing 21 changed files with 75 additions and 63 deletions.
39 changes: 39 additions & 0 deletions docs/source/design/class_hierarchy.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,45 @@ There are several important design choices behind this class hierarchy:

2. **Uniformity**: The model runner needs a unified interface to create and initialize the model. vLLM supports more than 50 types of popular open-source models. Each model has its own initialization logic. If the constructor signature varies with models, the model runner does not know how to call the constructor accordingly, without complicated and error-prone inspection logic. By making the constructor of the model class uniform, the model runner can easily create and initialize the model without knowing the specific model type. This is also useful for composing models. Vision-language models often consist of a vision model and a language model. By making the constructor uniform, we can easily create a vision model and a language model and compose them into a vision-language model.

.. note::

To support this change, all vLLM models' signatures have been updated to:

.. code-block:: python
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
To avoid accidentally passing incorrect arguments, the constructor is now keyword-only. This ensures that the constructor will raise an error if old configurations are passed. vLLM developers have already made this change for all models within vLLM. For out-of-tree registered models, developers need to update their models, for example by adding shim code to adapt the old constructor signature to the new one:

.. code-block:: python
class MyOldModel(nn.Module):
def __init__(
self,
config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
prefix: str = "",
) -> None:
...
from vllm.config import VllmConfig
class MyNewModel(MyOldModel):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
super().__init__(config, cache_config, quant_config, lora_config, prefix)
if __version__ >= "0.6.4":
MyModel = MyNewModel
else:
MyModel = MyOldModel
This way, the model can work with both old and new versions of vLLM.

3. **Sharding and Quantization at Initialization**: Certain features require changing the model weights. For example, tensor parallelism needs to shard the model weights, and quantization needs to quantize the model weights. There are two possible ways to implement this feature. One way is to change the model weights after the model is initialized. The other way is to change the model weights during the model initialization. vLLM chooses the latter. The first approach is not scalable to large models. Suppose we want to run a 405B model (with roughly 810GB weights) with 16 H100 80GB GPUs. Ideally, every GPU should only load 50GB weights. If we change the model weights after the model is initialized, we need to load the full 810GB weights to every GPU and then shard the weights, leading to a huge memory overhead. Instead, if we shard the weights during the model initialization, every layer will only create a shard of the weights it needs, leading to a much smaller memory overhead. The same idea applies to quantization. Note that we also add an additional argument ``prefix`` to the model's constructor so that the model can initialize itself differently based on the prefix. This is useful for non-uniform quantization, where different parts of the model are quantized differently. The ``prefix`` is usually an empty string for the top-level model and a string like ``"vision"`` or ``"language"`` for the sub-models. In general, it matches the name of the module's state dict in the checkpoint file.

One disadvantage of this design is that it is hard to write unit tests for individual components in vLLM because every component needs to be initialized by a complete config object. We solve this problem by providing a default initialization function that creates a default config object with all fields set to ``None``. If the component we want to test only cares about a few fields in the config object, we can create a default config object and set the fields we care about. This way, we can test the component in isolation. Note that many tests in vLLM are end-to-end tests that test the whole system, so this is not a big problem.
Expand Down
17 changes: 15 additions & 2 deletions vllm/model_executor/model_loader/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import dataclasses
import fnmatch
import glob
import inspect
import json
import math
import os
Expand Down Expand Up @@ -88,11 +89,23 @@ def device_loading_context(module: torch.nn.Module,
logger = init_logger(__name__)


def _initialize_model(vllm_config: VllmConfig) -> nn.Module:
def _initialize_model(vllm_config: VllmConfig, prefix: str = "") -> nn.Module:
"""Initialize a model with the given configurations."""
model_config = vllm_config.model_config
model_class, _ = get_model_architecture(model_config)
return model_class(vllm_config=vllm_config)
signatures = inspect.signature(model_class.__init__)
# collect all kw-only parameters
kw_only_params = [
param.name for param in signatures.parameters.values()
if param.kind == inspect.Parameter.KEYWORD_ONLY
]
assert "vllm_config" in kw_only_params and "prefix" in kw_only_params, \
("vLLM model class must accept `vllm_config` and `prefix` as kw-only "
"arguments. Possibly you have an old-style model class registered from "
"out of tree and it is used for new vLLM version. "
"Please check https://docs.vllm.ai/en/latest/design/class_hierarchy.html "
"for the design and update the model class accordingly.")
return model_class(vllm_config=vllm_config, prefix=prefix)


class BaseModelLoader(ABC):
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/arctic.py
Original file line number Diff line number Diff line change
Expand Up @@ -415,7 +415,7 @@ def forward(

class ArcticForCausalLM(nn.Module, SupportsPP):

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,11 +281,7 @@ def forward(

class BloomForCausalLM(nn.Module, SupportsPP):

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/chatglm.py
Original file line number Diff line number Diff line change
Expand Up @@ -593,11 +593,7 @@ class ChatGLMForCausalLM(nn.Module, SupportsLoRA, SupportsPP,
embedding_modules = {}
embedding_padding_modules = []

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/dbrx.py
Original file line number Diff line number Diff line change
Expand Up @@ -350,11 +350,7 @@ def forward(

class DbrxForCausalLM(nn.Module, SupportsPP):

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/eagle.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ class EAGLE(nn.Module):
in the draft checkpoint (using key token_map). Also, the draft config
needs to have truncated_vocab_size (=k) as an attribute."""

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.config = config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/falcon.py
Original file line number Diff line number Diff line change
Expand Up @@ -401,11 +401,7 @@ class FalconForCausalLM(nn.Module, SupportsPP):
".dense_4h_to_h.",
]

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/fuyu.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,7 +225,7 @@ def input_mapper_for_fuyu(ctx: InputContext, data: object):
@INPUT_REGISTRY.register_input_processor(input_processor_for_fuyu)
class FuyuForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/gpt2.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,11 +242,7 @@ def forward(

class GPT2LMHeadModel(nn.Module, SupportsPP):

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/gpt_bigcode.py
Original file line number Diff line number Diff line change
Expand Up @@ -257,11 +257,7 @@ class GPTBigCodeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):

embedding_padding_modules = []

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/gpt_j.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,11 +229,7 @@ def forward(

class GPTJForCausalLM(nn.Module, SupportsPP):

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/gpt_neox.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,11 +242,7 @@ def forward(

class GPTNeoXForCausalLM(nn.Module, SupportsPP):

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/internvl.py
Original file line number Diff line number Diff line change
Expand Up @@ -409,7 +409,7 @@ def dummy_data(
@INPUT_REGISTRY.register_input_processor(input_pipeline.input_processor)
class InternVLChatModel(nn.Module, SupportsMultiModal, SupportsPP):

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()

config = vllm_config.model_config.hf_config
Expand Down
6 changes: 1 addition & 5 deletions vllm/model_executor/models/jais.py
Original file line number Diff line number Diff line change
Expand Up @@ -286,11 +286,7 @@ def forward(

class JAISLMHeadModel(nn.Module, SupportsPP):

def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/llava.py
Original file line number Diff line number Diff line change
Expand Up @@ -259,7 +259,7 @@ def init_vision_tower_for_llava(
@INPUT_REGISTRY.register_input_processor(input_processor_for_llava)
class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()

config = vllm_config.model_config.hf_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/llava_next.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ def input_processor_for_llava_next(ctx: InputContext,
class LlavaNextForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/llava_next_video.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,7 +253,7 @@ def forward(self, image_features: torch.Tensor) -> torch.Tensor:
class LlavaNextVideoForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/llava_onevision.py
Original file line number Diff line number Diff line change
Expand Up @@ -404,7 +404,7 @@ def forward(self, image_features: torch.Tensor) -> torch.Tensor:
class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/medusa.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ class Medusa(nn.Module):
in the draft checkpoint (using key token_map). Also, the draft config
needs to have truncated_vocab_size (=k) as an attribute."""

def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
config = vllm_config.model_config.hf_config
super().__init__()
self.config = config
Expand Down
10 changes: 3 additions & 7 deletions vllm/model_executor/models/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models import ModelRegistry
from vllm.multimodal import MultiModalPlaceholderMap, NestedTensors
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
Expand Down Expand Up @@ -240,12 +239,9 @@ def init_vllm_registered_model(
Helper function to initialize an inner model registered to vLLM,
based on the arguments passed to the outer vLLM model.
"""
model_class, _ = ModelRegistry.resolve_model_cls(hf_config.architectures)

return model_class(
vllm_config=vllm_config.with_hf_config(hf_config),
prefix=prefix,
)
from vllm.model_executor.model_loader.loader import _initialize_model
vllm_config = vllm_config.with_hf_config(hf_config)
return _initialize_model(vllm_config, prefix)


@overload
Expand Down

0 comments on commit b29fdb0

Please sign in to comment.