Skip to content

meltjl/RL-Trading

Repository files navigation

Reinforcement Learning in Trading

This project is completed as part of the Master of Data Science degree at the University of Sydney, Australia.

Overview

The idea of predicting financial instruments has been the goal of many due in part to the expectation that predicting these instruments can prove lucrative. Whilst the accurate prediction of price seemed reasonable, they do not necessarily guarantee positive returns due to commissions, large profit draw-downs and excessive switching behaviours. Reinforcement Learning (RL) is an autonomous approach to decision making process through repetitive self- learning and evaluation. The idea is to train an agent to learn to execute an order by acting on a suitable strategy that maximizes profit.

In this project, we adapted the codes from Practical Deep Reinforcement Learning Approach for Stock Trading, Xiong et al (2018) but applied the Proximal Policy Optimization Algorithmm, Schulman et al (2017). The model achieved an annual return of 34.06%. We also found that adding technical indicators altered the agent’s trading activities significantly.

Results

Figure1

Fig.1 - Comparison of before and after training data set using PPO2 with different clipping (0% commission and without technical indicators)

Figure2

Fig.2 - Comparison of portfolio value when technical indicators are used (0% commission)

Figure3

Fig.3 - Buy and Sell activity for test data (No technical indicators) shows the lack of buy/sell actvities


Figure4

Fig.4 - Buy and Sell activity for test data (With technical indicators) shows increased buy/sell activities



Figure5

Fig.5 - Comparison of Test result using PPO2 algorithm under various commission rates.

Environment

Create virtual environment

$ python3 -m venv RL_Trading

Activate environment

$ source RL_Trading/bin/activate

Install all dependent libraries

(RL_Trading) $ pip install -r requirements.txt

Reproducability

The following files were edited to ensure reproducibility. Copy the files from

  • /files To Overwrite/stable_baselines/common/policies.py
  • /files To Overwrite/stable_baselines/ppo2/ppo2.py

to your virtual environment.

  • ../lib/python3.6/site-packages/stable_baselines/common/policies.py
  • ../lib/python3.6/site-packages/stable_baselines/ppo2/ppo2.py

Data

  1. At bare minimum, data set must contain at least three columns with the columns name and date format defined exactly below:

     ticker, date, adj_close
     AAPL, 2000-01-03, 111.9375
     AXP, 2000-01-03, 157.25
     
  2. To change commission rate or add other data, edit to config.json to configure the combination of assets and dates

         {
         	"api" : xxxxx,
         	"portfolios": [{
         			"name": "portfolio1",
         			"asset": ["IBM"],
         			"start_date": "2018-03-20",
         			"end_date": "None",
         			"commission_fee": "1e-5"
         		},
         		{
         			"name": "portfolio2",
         			"asset": ["IBM", "GE", "BA", "MMM", "ABT", "CA"],
         			"start_date": "2010-01-01",
         			"end_date": "None",
         			"commission_fee": "1e-5"
         		}
         	]
         }
     

Running the code

Example 1 : To run portfolio4 without technical indicators

$ python main.py -p 4 -t N
*** Run agent on unseen data ***
observation_space :	 Box(57,)
action_space :	 Box(28,)
**** Summary*****
Model:			 PPO2_PORTFOLIO4_20191211 2139_0_TEST LR=0.01, CLIPRANGE=0.3, COMMISSION=0.00
Number of Assets:	      28
Initial Investment :	10000.00
Portfolio Value:	22090.92
% Returns:		  120.91%
***************

train_dates: 2000-01-03 00:00:00 2015-12-31T00:00:00
test_dates: 2016-01-04T00:00:00 2018-09-21T00:00:00
backtest 0 : SUM reward : before | after | backtest :  17276.22 |  91000.59 |  12217.08

Example 2 : To use portfolio4 with technical indicators

$ python main.py -p 4 -t Y
*** Run agent on unseen data ***
observation_space :	 Box(561,)
action_space :	 Box(28,)
**** Summary*****
Model:			 PPO2_PORTFOLIO4_20191211 2140_0_TEST LR=0.01, CLIPRANGE=0.3, COMMISSION=0.00
Number of Assets:	      28
Initial Investment :	10000.00
Portfolio Value:	19298.47
% Returns:		   92.98%
***************

train_dates: 2000-01-03 00:00:00 2015-12-31T00:00:00
test_dates: 2016-01-04T00:00:00 2018-09-21T00:00:00
backtest 0 : SUM reward : before | after | backtest :  16377.49 |  14912.09 |  9364.97

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages