Skip to content

Commit

Permalink
Added full processing test script and accessory files
Browse files Browse the repository at this point in the history
  • Loading branch information
scottransom committed Nov 17, 2019
1 parent 4ec8edf commit 47065dc
Show file tree
Hide file tree
Showing 4 changed files with 154 additions and 0 deletions.
20 changes: 20 additions & 0 deletions tests/1643-1224.par
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
PSRJ J1643-1224
RAJ 16:43:38.15583 4.000e-05
DECJ -12:24:58.720 4.000e-03
DM 62.4121 2.000e-04
PEPOCH 50288.0000
F0 216.373340849179 1 5.000e-12
F1 -8.657E-16 5.000e-19
PMRA 3 1.000e+00
PMDEC -8 5.000e+00
POSEPOCH 50288.00
BINARY ELL1
PB 147.0173943 7.000e-07
A1 25.072613 1.000e-06
OM 321.808 1.100e-05
TASC 50181.618211 1.000e-06
EPS1 -3.1271E-04 9.000e-08
EPS2 3.975E-04 1.000e-07
START 49645.1250
FINISH 50931.5800
CLK UTC(NIST)
4 changes: 4 additions & 0 deletions tests/Lband.birds
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
#Freq Width #harm grow? bary?
28.760 0.1 2 0 0
60.0 0.05 2 1 0

78 changes: 78 additions & 0 deletions tests/dedisp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
import os

# To use this script to help you dedisperse a bunch of time series, first
# run DDplan.py with appropriate values for your data to generate a
# dedispersion plan:
#
# sransom@foops:~$ DDplan.py -d 200 -t 0.000072 -s 32 -n 96 -b 48.0 -f 820.0
#
# Minimum total smearing : 0.102 ms
# --------------------------------------------
# Minimum channel smearing : 3.76e-05 ms
# Minimum smearing across BW : 0.00361 ms
# Minimum sample time : 0.072 ms
#
# Setting the new 'best' resolution to : 0.072 ms
# Best guess for optimal initial dDM is 0.199
#
# Low DM High DM dDM DownSamp dsubDM #DMs DMs/call calls WorkFract
# 0.000 38.400 0.20 1 4.80 192 24 8 0.7273
# 38.400 60.000 0.30 2 7.20 72 24 3 0.1364
# 60.000 108.000 0.50 4 12.00 96 24 4 0.09091
# 108.000 204.000 1.00 8 24.00 96 24 4 0.04545
#
#
# Now with that plan, fill in the lists below and appropriate variables
# for your data and you can then generate the subbands and time series
# using "python dedisp.py"
#


def myexecute(cmd):
print("'%s'"%cmd)
os.system(cmd)


# dDM steps from DDplan.py
dDMs = [2.0, 3.0]
# dsubDM steps
dsubDMs = [48., 72.]
# downsample factors
downsamps = [4, 8]
# number of calls per set of subbands
subcalls = [7, 3]
# The low DM for each set of DMs
startDMs = [0.0, 336.0]
# DMs/call
dmspercall = 24
# Number of subbands
nsub = 32
# The basename of the output files you want to use
basename = "Lband"
# The name of the raw data file (or files if you use wildcards) to use
rawfiles = "GBT*.fil"
# The name of the maskfile to apply (if no mask, use None)
maskfile = basename+"_rfifind.mask"

# Loop over the DDplan plans
for dDM, dsubDM, downsamp, subcall, startDM in \
zip(dDMs, dsubDMs, downsamps, subcalls, startDMs):
# Get our downsampling right
subdownsamp = downsamp/2
datdownsamp = 2
if downsamp < 2: subdownsamp = datdownsamp = 1
# Loop over the number of calls
for ii in range(subcall):
subDM = startDM + (ii+0.5)*dsubDM
# First create the subbands
if maskfile:
myexecute("prepsubband -mask %s -sub -subdm %.2f -nsub %d -downsamp %d -o %s %s" %
(maskfile, subDM, nsub, subdownsamp, basename, rawfiles))
else:
myexecute("prepsubband -sub -subdm %.2f -nsub %d -downsamp %d -o %s %s" %
(subDM, nsub, subdownsamp, basename, rawfiles))
# And now create the time series
loDM = startDM + ii*dsubDM
subnames = basename+"_DM%.2f.sub[0-9]*"%subDM
myexecute("prepsubband -lodm %.2f -dmstep %.2f -numdms %d -downsamp %d -o %s %s" %
(loDM, dDM, dmspercall, datdownsamp, basename, subnames))
52 changes: 52 additions & 0 deletions tests/process_example_data.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
cd /dev/shm
mkdir test
cd test
touch process.stdout
wget http://www.cv.nrao.edu/~sransom/GBT_Lband_PSR.fil
# cp /home/sransom/data/PRESTO_tutorial/GBT_Lband_PSR.fil .
readfile GBT_Lband_PSR.fil
rfifind -time 1.0 -o Lband GBT_Lband_PSR.fil >> process.stdout
rfifind -nocompute -time 1.0 -freqsig 6.0 -mask Lband_rfifind.mask -o Lband GBT_Lband_PSR.fil >> process.stdout
rfifind_stats.py Lband_rfifind.mask
weights_to_ignorechan.py Lband_rfifind.weights
prepdata -nobary -o Lband_topo_DM0.00 -dm 0.0 -mask Lband_rfifind.mask GBT_Lband_PSR.fil
# exploredat Lband_topo_DM0.00.dat
realfft Lband_topo_DM0.00.dat
# explorefft Lband_topo_DM0.00.fft
accelsearch -numharm 4 -zmax 0 Lband_topo_DM0.00.dat
cat Lband_topo_DM0.00_ACCEL_0
cp $PRESTO/tests/Lband.birds .
prepdata -o tmp GBT_Lband_PSR.fil | grep Average
DDplan.py -d 500.0 -n 96 -b 96 -t 0.000072 -f 1400.0 -s 32 -r 0.5 -o test_DDplan.ps
ls -l test_DDplan.ps
cp $PRESTO/tests/dedisp.py .
python dedisp.py >> process.stdout 2>&1
mkdir subbands
mv *.sub* subbands/
rm -f tmp.* *.tmp Lband*topo*
ls *.dat | xargs -n 1 realfft >> process.stdout
ls *dat | wc
ls *fft | wc
cp Lband_DM0.00.inf Lband.inf
makezaplist.py Lband.birds
ls -l *zaplist
ls *.fft | xargs -n 1 zapbirds -zap -zapfile Lband.zaplist -baryv -5.697334e-05 >> process.stdout
ls *.fft | xargs -n 1 accelsearch -zmax 0 -flo 15 >> process.stdout
cp $PRESTO/python/ACCEL_sift.py .
python ACCEL_sift.py
quick_prune_cands.py *DM62*0
quickffdots.py Lband_DM62.00.fft 216.373
gotocand.py -local Lband_DM62.00_ACCEL_0:1 -noxwin
prepfold -noxwin -accelcand 1 -accelfile Lband_DM62.00_ACCEL_0.cand -dm 62 subbands/Lband_DM72.00.sub??
mv subbands/*.pfd* .
prepfold -noxwin -nosearch -n 64 -fine -nsub 96 -p 0.004621638 -dm 62.3 GBT_Lband_PSR.fil
prepfold -noxwin -nodmsearch -n 64 -fine -nsub 96 -p 0.004621 -o periodsearch -dm 62.3 GBT_Lband_PSR.fil
pfd_for_timing.py *pfd
single_pulse_search.py *dat >> process.stdout
ls -l Lband_singlepulse.ps
# pygaussfit.py GBT_Lband_PSR_4.62ms_Cand.pfd
# cat > test.gaussians
get_TOAs.py -2 -s 2 -n 16 -d 62.3 -g 0.04 GBT_Lband_PSR_4.62ms_Cand.pfd > xxx.tim
cp $PRESTO/tests/1643-1224.par .
tempo -f 1643-1224.par xxx.tim
# pyplotres.py

0 comments on commit 47065dc

Please sign in to comment.