Skip to content

magic-Alex/ollama-python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ollama Python Library

The Ollama Python library provides the easiest way to integrate Python 3.8+ projects with Ollama.

Install

pip install ollama

Usage

import ollama
response = ollama.chat(model='llama3', messages=[
  {
    'role': 'user',
    'content': 'Why is the sky blue?',
  },
])
print(response['message']['content'])

Streaming responses

Response streaming can be enabled by setting stream=True, modifying function calls to return a Python generator where each part is an object in the stream.

import ollama

stream = ollama.chat(
    model='llama3',
    messages=[{'role': 'user', 'content': 'Why is the sky blue?'}],
    stream=True,
)

for chunk in stream:
  print(chunk['message']['content'], end='', flush=True)

API

The Ollama Python library's API is designed around the Ollama REST API

Chat

ollama.chat(model='llama3', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}])

Generate

ollama.generate(model='llama3', prompt='Why is the sky blue?')

List

ollama.list()

Show

ollama.show('llama3')

Create

modelfile='''
FROM llama3
SYSTEM You are mario from super mario bros.
'''

ollama.create(model='example', modelfile=modelfile)

Copy

ollama.copy('llama3', 'user/llama3')

Delete

ollama.delete('llama3')

Pull

ollama.pull('llama3')

Push

ollama.push('user/llama3')

Embeddings

ollama.embeddings(model='llama3', prompt='The sky is blue because of rayleigh scattering')

Ps

ollama.ps()

Custom client

A custom client can be created with the following fields:

  • host: The Ollama host to connect to
  • timeout: The timeout for requests
from ollama import Client
client = Client(host='http://localhost:11434')
response = client.chat(model='llama3', messages=[
  {
    'role': 'user',
    'content': 'Why is the sky blue?',
  },
])

Async client

import asyncio
from ollama import AsyncClient

async def chat():
  message = {'role': 'user', 'content': 'Why is the sky blue?'}
  response = await AsyncClient().chat(model='llama3', messages=[message])

asyncio.run(chat())

Setting stream=True modifies functions to return a Python asynchronous generator:

import asyncio
from ollama import AsyncClient

async def chat():
  message = {'role': 'user', 'content': 'Why is the sky blue?'}
  async for part in await AsyncClient().chat(model='llama3', messages=[message], stream=True):
    print(part['message']['content'], end='', flush=True)

asyncio.run(chat())

Errors

Errors are raised if requests return an error status or if an error is detected while streaming.

model = 'does-not-yet-exist'

try:
  ollama.chat(model)
except ollama.ResponseError as e:
  print('Error:', e.error)
  if e.status_code == 404:
    ollama.pull(model)

About

Ollama Python library

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%