-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
3,890 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
import numpy as np | ||
from publik import modifier | ||
import knunu_utils | ||
|
||
from Bayesian_pyhf import infer | ||
from Bayesian_pyhf import prepare_inference | ||
import pymc as pm | ||
|
||
null = knunu_utils.null_pred() | ||
alt = knunu_utils.alt_pred() | ||
|
||
model, alt_yields = modifier.load('knunu_model.json', alt.distribution, null.distribution, return_data=True) | ||
|
||
# Perform the sampling | ||
unconstr_priors = { | ||
'mu': {'type': 'Normal_Unconstrained', 'mu': [1.], 'sigma': [1e-10]}, | ||
'cvl': {'type': 'Uniform_Unconstrained', 'lower': [2.], 'upper': [10.]}, | ||
'csl': {'type': 'Uniform_Unconstrained', 'lower': [0.], 'upper': [5.]}, | ||
'ctl': {'type': 'Uniform_Unconstrained', 'lower': [0.], 'upper': [5.]} | ||
} | ||
|
||
priorDict_conjugate = prepare_inference.build_priorDict(model, unconstr_priors) | ||
priorDict_conjugate | ||
|
||
n_draws = 10000 | ||
with infer.model(model, unconstr_priors, alt_yields): | ||
# step = pm.Metropolis() | ||
post_data = pm.sample(draws=n_draws)#, step=step, tune=1000) | ||
post_pred = pm.sample_posterior_predictive(post_data) | ||
prior_pred = pm.sample_prior_predictive(n_draws) | ||
|
||
post_data.to_json( 'samples/nuts_post_data.json') | ||
post_pred.to_json( 'samples/nuts_post_pred.json') | ||
prior_pred.to_json('samples/nuts_prior_pred.json') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
import numpy as np | ||
import eos | ||
import numbers | ||
|
||
def analysis(): | ||
""" | ||
Specify the likelihoods and FF parameter ranges | ||
Returns: | ||
EOS analysis instance | ||
""" | ||
|
||
# form factor expansion f+_0,1,2 are expansion parameters up to 2nd order | ||
# there is no f0_0 because of a constriant which removes one parameter | ||
|
||
parameters = [ | ||
0.33772497529184886, -0.87793473613271, -0.07935870922121949, | ||
0.3719622997220613, 0.07388594710238389, 0.327935912834808, | ||
-0.9490004115927961, -0.23146429907794228 | ||
] | ||
paramerror = [ | ||
0.010131234226468245, 0.09815140228051167, 0.26279803480131697, | ||
0.07751034526769873, 0.14588095119443809, 0.019809720318176644, | ||
0.16833757660616938, 0.36912754148836896 | ||
] | ||
sigma = 15 | ||
analysis_args = { | ||
'priors': [ | ||
{ 'parameter': 'B->K::alpha^f+_0@BSZ2015', 'min': parameters[0]-sigma*paramerror[0], 'max': parameters[0]+sigma*paramerror[0], 'type': 'uniform' }, | ||
{ 'parameter': 'B->K::alpha^f+_1@BSZ2015', 'min': parameters[1]-sigma*paramerror[1], 'max': parameters[1]+sigma*paramerror[1], 'type': 'uniform' }, | ||
{ 'parameter': 'B->K::alpha^f+_2@BSZ2015', 'min': parameters[2]-sigma*paramerror[2], 'max': parameters[2]+sigma*paramerror[2], 'type': 'uniform' }, | ||
{ 'parameter': 'B->K::alpha^f0_1@BSZ2015', 'min': parameters[3]-sigma*paramerror[3], 'max': parameters[3]+sigma*paramerror[3], 'type': 'uniform' }, | ||
{ 'parameter': 'B->K::alpha^f0_2@BSZ2015', 'min': parameters[4]-sigma*paramerror[4], 'max': parameters[4]+sigma*paramerror[4], 'type': 'uniform' }, | ||
{ 'parameter': 'B->K::alpha^fT_0@BSZ2015', 'min': parameters[5]-sigma*paramerror[5], 'max': parameters[5]+sigma*paramerror[5], 'type': 'uniform' }, | ||
{ 'parameter': 'B->K::alpha^fT_1@BSZ2015', 'min': parameters[6]-sigma*paramerror[6], 'max': parameters[6]+sigma*paramerror[6], 'type': 'uniform' }, | ||
{ 'parameter': 'B->K::alpha^fT_2@BSZ2015', 'min': parameters[7]-sigma*paramerror[7], 'max': parameters[7]+sigma*paramerror[7], 'type': 'uniform' } | ||
], | ||
'likelihood': [ | ||
'B->K::f_0+f_++f_T@FLAG:2021A', | ||
'B->K::f_0+f_++f_T@HPQCD:2022A' | ||
] | ||
} | ||
|
||
analysis = eos.Analysis(**analysis_args) | ||
analysis.optimize() | ||
return analysis | ||
|
||
def efficiency(q2): | ||
""" | ||
Efficiency map adapted from https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.127.181802/suppl_mat.pdf (Figure 3) | ||
Overall scale different, as this can be compensated be number of simulated events. | ||
""" | ||
return np.exp(-0.2*q2) | ||
|
||
class null_pred: | ||
""" | ||
Null (SM) prediction | ||
""" | ||
def __init__(self): | ||
p = analysis().parameters | ||
k = eos.Kinematics({'q2': 0.}) | ||
o = eos.Options(**{'form-factors': 'BSZ2015', 'model': 'WET'}) | ||
|
||
self.kv1 = k['q2'] | ||
|
||
self.obs = eos.Observable.make('B->Knunu::dBR/dq2', p, k, o) | ||
|
||
def distribution(self, q2): | ||
if isinstance(q2, numbers.Number): | ||
self.kv1.set(q2) | ||
obs = self.obs.evaluate() | ||
else: | ||
obs = [] | ||
for q in q2: | ||
self.kv1.set(q) | ||
obs.append(self.obs.evaluate()) | ||
|
||
return obs | ||
|
||
class alt_pred: | ||
""" | ||
Alternative (BSM) prediction | ||
""" | ||
def __init__(self): | ||
self.ana = analysis() | ||
p = self.ana.parameters | ||
k = eos.Kinematics({'q2': 0.}) | ||
o = eos.Options(**{'form-factors': 'BSZ2015', 'model': 'WET'}) | ||
|
||
self.kv1 = k['q2' ] | ||
self.wc1 = p['sbnunu::Re{cVL}' ] | ||
self.wc2 = p['sbnunu::Re{cSL}' ] | ||
self.wc3 = p['sbnunu::Re{cTL}' ] | ||
self.hv1 = p['B->K::alpha^f+_0@BSZ2015'] | ||
self.hv2 = p['B->K::alpha^f+_1@BSZ2015'] | ||
self.hv3 = p['B->K::alpha^f+_2@BSZ2015'] | ||
self.hv4 = p['B->K::alpha^f0_1@BSZ2015'] | ||
self.hv5 = p['B->K::alpha^f0_2@BSZ2015'] | ||
self.hv6 = p['B->K::alpha^fT_0@BSZ2015'] | ||
self.hv7 = p['B->K::alpha^fT_1@BSZ2015'] | ||
self.hv8 = p['B->K::alpha^fT_2@BSZ2015'] | ||
|
||
self.obs = eos.Observable.make('B->Knunu::dBR/dq2', p, k, o) | ||
|
||
def distribution(self, q2, cvl, csl, ctl, fp0, fp1, fp2, f01, f02, fT0, fT1, fT2): | ||
self.wc1.set(cvl) | ||
self.wc2.set(csl) | ||
self.wc3.set(ctl) | ||
self.hv1.set(fp0) | ||
self.hv2.set(fp1) | ||
self.hv3.set(fp2) | ||
self.hv4.set(f01) | ||
self.hv5.set(f02) | ||
self.hv6.set(fT0) | ||
self.hv7.set(fT1) | ||
self.hv8.set(fT2) | ||
|
||
if isinstance(q2, numbers.Number): | ||
self.kv1.set(q2) | ||
obs = self.obs.evaluate() | ||
else: | ||
obs = [] | ||
for q in q2: | ||
self.kv1.set(q) | ||
obs.append(self.obs.evaluate()) | ||
|
||
return obs | ||
|
||
def parameter_cov(ana): | ||
""" | ||
Get covariance matrix of parameters in EOS analysis object. | ||
""" | ||
pars = [] | ||
for n in range(0,5): | ||
rng = np.random.mtrand.RandomState(74205+n) | ||
p, _ = ana.sample(N=5000, stride=5, pre_N=1000, preruns=5, rng=rng) | ||
pars += p.tolist() | ||
pars = np.array(pars) | ||
cov = np.cov(pars.T).tolist() | ||
return cov |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
import numpy as np | ||
import eos | ||
import numbers | ||
|
||
def analysis(): | ||
""" | ||
Specify the likelihoods and FF parameter ranges | ||
Returns: | ||
EOS analysis instance | ||
""" | ||
|
||
analysis_args = { | ||
'priors': [ | ||
{ 'parameter': 'B->D::alpha^f+_0@BSZ2015', 'min': 0.0, 'max': 1.0, 'type': 'uniform' }, | ||
{ 'parameter': 'B->D::alpha^f+_1@BSZ2015', 'min': -5.0, 'max': +5.0, 'type': 'uniform' }, | ||
{ 'parameter': 'B->D::alpha^f+_2@BSZ2015', 'min': -5.0, 'max': +5.0, 'type': 'uniform' }, | ||
{ 'parameter': 'B->D::alpha^f0_1@BSZ2015', 'min': -5.0, 'max': +5.0, 'type': 'uniform' }, | ||
{ 'parameter': 'B->D::alpha^f0_2@BSZ2015', 'min': -5.0, 'max': +5.0, 'type': 'uniform' } | ||
], | ||
'likelihood': [ | ||
'B->D::f_++f_0@HPQCD:2015A', | ||
'B->D::f_++f_0@FNAL+MILC:2015B' | ||
] | ||
} | ||
|
||
analysis = eos.Analysis(**analysis_args) | ||
analysis.optimize() | ||
return analysis | ||
|
||
class null_pred: | ||
""" | ||
Null (SM) prediction | ||
""" | ||
def __init__(self): | ||
p = eos.Parameters() | ||
o = eos.Options({'form-factors': 'BSZ2015', 'l': 'tau', 'model':'WET'}) | ||
k = eos.Kinematics({'q2': 5.0, 'cos(theta_l)': 0.0,}) | ||
|
||
self.kv1 = k['q2'] | ||
self.kv2 = k['cos(theta_l)'] | ||
|
||
self.obs = eos.Observable.make('B->pilnu::d^2BR/dq2/dcos(theta_l)', p, k, o) | ||
|
||
|
||
def distribution(self, q2, costl): | ||
if isinstance(q2, numbers.Number) and isinstance(costl, numbers.Number): | ||
self.kv1.set(q2) | ||
self.kv2.set(costl) | ||
obs = self.obs.evaluate() | ||
else: | ||
obs = [] | ||
for q in q2: | ||
coslist = [] | ||
for ct in costl: | ||
self.kv1.set(q) | ||
self.kv2.set(ct) | ||
o = self.obs.evaluate() | ||
coslist.append(o) | ||
obs.append(coslist) | ||
obs = np.array(obs).T | ||
|
||
return obs | ||
|
||
class alt_pred: | ||
""" | ||
Alternative (BSM) prediction | ||
""" | ||
def __init__(self): | ||
self.ana = analysis() | ||
p = self.ana.parameters | ||
o = eos.Options({'form-factors': 'BSZ2015', 'l': 'tau', 'model':'WET'}) | ||
k = eos.Kinematics({'q2': 5.0, 'cos(theta_l)': 0.0,}) | ||
|
||
self.kv1 = k['q2'] | ||
self.kv2 = k['cos(theta_l)'] | ||
self.wc1 = p['ubtaunutau::Re{cVL}' ] | ||
self.wc2 = p['ubtaunutau::Re{cSL}' ] | ||
self.wc3 = p['ubtaunutau::Re{cT}' ] | ||
self.hv1 = p['B->D::alpha^f+_0@BSZ2015'] | ||
self.hv2 = p['B->D::alpha^f+_1@BSZ2015'] | ||
self.hv3 = p['B->D::alpha^f+_2@BSZ2015'] | ||
self.hv4 = p['B->D::alpha^f0_1@BSZ2015'] | ||
self.hv5 = p['B->D::alpha^f0_2@BSZ2015'] | ||
|
||
self.obs = eos.Observable.make('B->pilnu::d^2BR/dq2/dcos(theta_l)', p, k, o) | ||
|
||
|
||
def distribution(self, q2, costl, cvl, csl, ct, fp0, fp1, fp2, f01, f02): | ||
self.wc1.set(cvl) | ||
self.wc2.set(csl) | ||
self.wc3.set(ct ) | ||
self.hv1.set(fp0) | ||
self.hv2.set(fp1) | ||
self.hv3.set(fp2) | ||
self.hv4.set(f01) | ||
self.hv5.set(f02) | ||
|
||
if isinstance(q2, numbers.Number) and isinstance(costl, numbers.Number): | ||
self.kv1.set(q2) | ||
self.kv2.set(costl) | ||
obs = self.obs.evaluate() | ||
else: | ||
obs = [] | ||
for q in q2: | ||
coslist = [] | ||
for ct in costl: | ||
self.kv1.set(q) | ||
self.kv2.set(ct) | ||
o = self.obs.evaluate() | ||
coslist.append(o) | ||
obs.append(coslist) | ||
obs = np.array(obs).T | ||
|
||
return obs | ||
|
||
def parameter_cov(ana): | ||
""" | ||
Get covariance matrix of parameters in EOS analysis object. | ||
""" | ||
pars = [] | ||
for n in range(0,5): | ||
rng = np.random.mtrand.RandomState(74205+n) | ||
p, _ = ana.sample(N=5000, stride=5, pre_N=1000, preruns=5, rng=rng) | ||
pars += p.tolist() | ||
pars = np.array(pars) | ||
cov = np.cov(pars.T).tolist() | ||
return cov |
Oops, something went wrong.