Releases: lehduong/Job-Scheduling-with-Reinforcement-Learning
Releases · lehduong/Job-Scheduling-with-Reinforcement-Learning
LACIE_A2C outperform vanilla A2C
Scripts to rerun experiments
python main.py --num-stream-jobs 1000 --num-stream-jobs-factor 1.05\
--num-curriculum-time 1 \
--algo lacie_a2c \
--num-env-steps 20000000\
--gamma 0.97\
--entropy-coef 0.01\
--load-balance-service-rates 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 \
--eval-interval 50\
--reward-norm-factor 10000\
--lr 0.0007\
--num-mini-batch 32\
--adapt-lr 1e-3\
--num-inner-steps 5\
--num-process 16 --num-steps 100 --log-interval 10 \
--seed 26 --recurrent-policy --use-linear-lr-decay\
--log-dir lacie_a2c_logs