Skip to content

My bachelor's TeX thesis and other related materials

License

Notifications You must be signed in to change notification settings

kubic71/bachelors-thesis

Repository files navigation

Exploring the vulnerabilities of commercial AI systems against adversarial attacks

My bachelor's TeX thesis and other related materials.

The write-up

Here's the thesis PDF

AdvPipe

I set out to explore current state-of-the-art black-box adversarial attacks and how they fare in practical attack scenarios. I want to test out adversarial robustness of some commercial MLaaS cloud services like Google Vision API, Amazon Rekognition, Clarifai, Microsoft Azure AI etc.

Different black-box AI models have different APIs, and so do different attack algorithms. On top of that, I have some ideas how to tweak/change current attacks to better suit the APIs of different MLaaS threat models. AdvPipe is intended to be a modular pipeline, that would incorporate various attack regimes, target models and attack algorithms into single framework.

More on this here

Setup

  • Tested on cuda 11.3, python 3.8
# Install NVIDIA cuda (depends on your distribution)
# for example on ArchLinux you would do:
$ sudo pacman -S cudnn cuda cuda-tools 

# you can also try to install cuda using conda environment manager, but I haven't tested how well conda plays together with poetry


# Install poetry (you can also try pip-installing it, but this is the official way)
$ curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -

# install all dependencies from lock-file
$ poetry install

That's all, really :)

Running experiment

Create experiment YAML configuration and pass it to advpipe_attack.py

$ cd src/advpipe
$ python advpipe_attack.py --config=attack_config/square_attack_resnet18.yaml

Attacks

To get a sense of what this complicated title means in practice, checkout some of my other repos with PoC adversarial attacks on Google Vision API:

About

My bachelor's TeX thesis and other related materials

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages