This project uses a pretrained MASK-RCNN model to do object detection. This project can be used to isolate the main human entity of an image/video and modify the background to be:
- grayscale |
mode = 'gray'
- green screen |
mode = 'green'
- blue screen |
mode = 'blue'
- an external image as virtual background |
mode = 'external'
|vbg = path/to/virtual/background
- Out of the box pre-trained Mask-RCNN model trained on the COCO dataset.
- numpy
- scipy
- Pillow
- cython
- matplotlib
- scikit-image
- tensorflow==1.15.2
- protobuf==3.20
- keras==2.2.4
- opencv-python
- h5py==2.10.0
- imgaug
- IPython[all]
Note:
- Use python 3.7
- Enable support for video virtual background
- Create proof-of-concept app
- Enhance edge detection / edge handling
- Enable support for webcam input (currently not implemented due to my hardware limitations)
- Refactorize code for better structure and clarity
- More robust exception handling
type this command in terminal/cmd/conda prompt:
conda env create -f mask_rcnn.yml
type this command in terminal/cmd/conda prompt:
pip install -r requirements.txt