Skip to content

jonathanjmak/data-augmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Augmentation Techniques and Style Shifting GANS

Utilize various data augmentation techniques and explore accuracy prediction on CIFAR-10.

Instructions

First train a conditional gan:

cd cgan/
python main.py

Then generate samples from the trained conditional gan:

python sample.py

Finally train the classifier:

cd ../vggnet/
python main.py

You can additionally train a discriminator to differentiate real from generated images:

cd ../cgan/
python threshold.py

Then use it to generate synthetic datasets that have a "realness" above a certain threshold:

python sample.py --threshold=0.9

Then train the classifier with this thresholded dataset:

python main.py --p_cifar=1. --p_thresholded=1. --threshold=0.9

About

Data Augmentation Techniques and Style Shifting

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published