forked from arbor-sim/arbor
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Tests for particle diffusion added (for different morphologies; also …
…pointing to the fact that the diffusion across segments of different radius is still erroneous; see arbor-sim#2145)
- Loading branch information
Showing
6 changed files
with
302 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -105,3 +105,6 @@ _skbuild | |
|
||
# generated by test scripts | ||
results | ||
|
||
# environment setting script | ||
set_arbor_env* |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
import unittest | ||
import arbor as A | ||
import numpy as np | ||
from .. import fixtures | ||
|
||
""" | ||
Tests for the concentration and amount of diffusive particles across time and morphology. | ||
Three different morphological structures are considered: 1 segment ("soma only"), 2 segments | ||
("soma with dendrite"), and 3 segments ("soma with two dendrites"). | ||
NOTE: Internally, Arbor only knows concentrations. Thus, particle amounts have to be computed | ||
from concentrations by integrating over the volume of the morphology. The total amount | ||
of particles should be conserved unless there is deliberate injection or removal of | ||
particles. | ||
""" | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# recipe class | ||
class recipe(A.recipe): | ||
def __init__(self, cat, cell, probes, inc_0, inc_1, dec_0): | ||
A.recipe.__init__(self) | ||
self.the_cell = cell | ||
self.the_probes = probes | ||
self.the_props = A.neuron_cable_properties() | ||
self.the_props.catalogue = cat # use the provided catalogue of diffusion mechanisms | ||
self.the_props.set_ion("s", 1, 0, 0, 0) # use diffusive particles "s" | ||
self.inc_0 = inc_0 # increase in particle amount at 0.1 s (in 1e-18 mol) | ||
self.inc_1 = inc_1 # increase in particle amount at 0.5 s (in 1e-18 mol) | ||
self.dec_0 = dec_0 # decrease in particle amount at 1.5 s (in 1e-18 mol) | ||
|
||
def num_cells(self): | ||
return 1 | ||
|
||
def cell_kind(self, gid): | ||
return A.cell_kind.cable | ||
|
||
def cell_description(self, gid): | ||
return self.the_cell | ||
|
||
def probes(self, gid): | ||
return self.the_probes | ||
|
||
def global_properties(self, kind): | ||
return self.the_props | ||
|
||
def event_generators(self, gid): | ||
g = [A.event_generator("syn_exc_A", self.inc_0, A.explicit_schedule([0.1])), | ||
A.event_generator("syn_exc_B", self.inc_1, A.explicit_schedule([0.5])), | ||
A.event_generator("syn_inh", -self.dec_0, A.explicit_schedule([1.5]))] | ||
return g | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# test class | ||
class TestDiffusion(unittest.TestCase): | ||
|
||
# Constructor (overridden) | ||
def __init__(self, args): | ||
super(TestDiffusion, self).__init__(args) | ||
|
||
self.runtime = 3.00 # runtime of the whole simulation in ms | ||
self.dt = 0.01 # duration of one timestep in ms | ||
self.dev = 0.01 # accepted relative deviation for `assertAlmostEqual` | ||
|
||
# Method to run an Arbor simulation with diffusion across different segments | ||
def simulate_diffusion(self, cat, _num_segs, _num_cvs_per_seg, _length, _r_1, _r_2 = 0., _r_3 = 0.): | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# set the main parameters and calculate geometrical measures | ||
num_segs = _num_segs # number of segments | ||
num_cvs_per_seg = _num_cvs_per_seg # number of CVs per segment | ||
|
||
length = _length # length of the whole setup (in case of 1 or 2 segments, one branch) in µm | ||
radius_1 = _r_1 # radius of the first segment in µm | ||
if num_segs > 1: | ||
radius_2 = _r_2 # radius of the second segment in µm | ||
else: | ||
radius_2 = 0 | ||
if num_segs > 2: | ||
radius_3 = _r_3 # radius of the third segment in µm | ||
else: | ||
radius_3 = 0 | ||
|
||
length_per_seg = length / num_segs # axial length of a segment in µm | ||
area_tot = 2 * np.pi * (radius_1 + radius_2 + radius_3) * length_per_seg # surface area of the whole setup in µm^2 (excluding the circle-shaped ends, since Arbor does not consider current flux there) | ||
area_per_cv = area_tot / (num_segs*num_cvs_per_seg) # surface area of one cylindrical CV in µm^2 (excluding the circle-shaped ends, since Arbor does not consider current flux there) | ||
volume_tot = np.pi * (radius_1**2 + radius_2**2 + radius_3**2) * length_per_seg # volume of the whole setup in µm^3 | ||
volume_per_cv = volume_tot / (num_segs*num_cvs_per_seg) # volume of one cylindrical CV in µm^3 | ||
|
||
inc_0 = 600 # first increase in particle amount (in 1e-18 mol) | ||
inc_1 = 1200 # second increase in particle amount (in 1e-18 mol) | ||
dec_0 = 1400 # decrease in particle amount (in 1e-18 mol) | ||
diffusivity = 1 # diffusivity (in m^2/s) | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# set up the morphology | ||
tree = A.segment_tree() | ||
if num_segs == 1: | ||
_ = tree.append(A.mnpos, | ||
A.mpoint(-length/2, 0, 0, radius_1), | ||
A.mpoint(+length/2, 0, 0, radius_1), | ||
tag=0) | ||
|
||
labels = A.label_dict({"soma-region" : "(tag 0)", | ||
"soma-center" : "(on-components 0.5 (region \"soma-region\"))", | ||
"soma-end" : "(on-components 1.0 (region \"soma-region\"))"}) | ||
elif num_segs == 2: | ||
s = tree.append(A.mnpos, | ||
A.mpoint(-length/2, 0, 0, radius_1), | ||
A.mpoint(0, 0, 0, radius_1), | ||
tag=0) | ||
_ = tree.append(s, | ||
A.mpoint(0, 0, 0, radius_2), | ||
A.mpoint(+length/2, 0, 0, radius_2), | ||
tag=1) | ||
|
||
labels = A.label_dict({"soma-region" : "(tag 0)", | ||
"dendriteA-region" : "(tag 1)", | ||
"soma-center" : "(on-components 0.5 (region \"soma-region\"))", | ||
"soma-end" : "(on-components 1.0 (region \"soma-region\"))", | ||
"dendriteA-center" : "(on-components 0.5 (region \"dendriteA-region\"))"}) | ||
elif num_segs == 3: | ||
|
||
s = tree.append(A.mnpos, | ||
A.mpoint(-1/3*length, 0, 0, radius_1), | ||
A.mpoint(0, 0, 0, radius_1), | ||
tag=0) | ||
_ = tree.append(s, | ||
A.mpoint(0, 0, 0, radius_2), | ||
A.mpoint(+1/3*length, 0, 0, radius_2), | ||
tag=1) | ||
_ = tree.append(s, | ||
A.mpoint(-1/3*length, 0, 0, radius_3), | ||
A.mpoint(-2/3*length, 0, 0, radius_3), | ||
tag=2) | ||
|
||
|
||
labels = A.label_dict({"soma-region" : "(tag 0)", | ||
"dendriteA-region" : "(tag 1)", | ||
"dendriteB-region" : "(tag 2)", | ||
"soma-center" : "(on-components 0.5 (region \"soma-region\"))", | ||
"soma-end" : "(on-components 1.0 (region \"soma-region\"))", | ||
"dendriteA-center" : "(on-components 0.5 (region \"dendriteA-region\"))", | ||
"dendriteB-center" : "(on-components 0.5 (region \"dendriteB-region\"))"}) | ||
else: | ||
raise ValueError(f"Specified number of segments not supported.") | ||
morph = A.morphology(tree) | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# decorate the morphology with mechanisms | ||
dec = A.decor() | ||
if num_segs < 3: | ||
dec.discretization(A.cv_policy(f'(fixed-per-branch {num_segs*num_cvs_per_seg} (branch 0))')) | ||
elif num_segs == 3: | ||
dec.discretization(A.cv_policy(f'(replace (fixed-per-branch {num_cvs_per_seg} (branch 0)) ' + \ | ||
f'(fixed-per-branch {num_cvs_per_seg} (branch 1)) ' + \ | ||
f'(fixed-per-branch {num_cvs_per_seg} (branch 2)))')) | ||
dec.set_ion("s", int_con=0.0, diff=diffusivity) | ||
if num_segs == 1: | ||
dec.place('"soma-end"', A.synapse("synapse_with_diffusion"), "syn_exc_A") | ||
dec.place('"soma-end"', A.synapse("synapse_with_diffusion"), "syn_exc_B") | ||
dec.place('"soma-end"', A.synapse("synapse_with_diffusion"), "syn_inh") | ||
elif num_segs == 2: | ||
dec.place('"dendriteA-center"', A.synapse("synapse_with_diffusion"), "syn_exc_A") | ||
dec.place('"soma-end"', A.synapse("synapse_with_diffusion"), "syn_exc_B") | ||
dec.place('"soma-end"', A.synapse("synapse_with_diffusion"), "syn_inh") | ||
elif num_segs == 3: | ||
dec.place('"dendriteA-center"', A.synapse("synapse_with_diffusion"), "syn_exc_A") | ||
dec.place('"dendriteB-center"', A.synapse("synapse_with_diffusion"), "syn_exc_B") | ||
dec.place('"soma-end"', A.synapse("synapse_with_diffusion"), "syn_inh") | ||
dec.paint('(all)', A.density("neuron_with_diffusion")) | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# set probes | ||
prb = [A.cable_probe_ion_diff_concentration('"soma-center"', "s"), | ||
A.cable_probe_density_state('"soma-center"', "neuron_with_diffusion", "sV"), | ||
A.cable_probe_density_state_cell("neuron_with_diffusion", "sV")] | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# prepare the simulation | ||
cel = A.cable_cell(tree, dec, labels) | ||
rec = recipe(cat, cel, prb, inc_0, inc_1, dec_0) | ||
sim = A.simulation(rec) | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# set handles | ||
hdl_s = sim.sample((0, 0), A.regular_schedule(self.dt)) # s at "soma-center" | ||
hdl_sV = sim.sample((0, 1), A.regular_schedule(self.dt)) # sV at "soma-center" | ||
hdl_sV_all = sim.sample((0, 2), A.regular_schedule(self.dt)) # sV (cell-wide array) | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# run the simulation | ||
sim.run(dt=self.dt, tfinal=self.runtime) | ||
|
||
# --------------------------------------------------------------------------------------- | ||
# retrieve data and do the testing | ||
data_s = sim.samples(hdl_s)[0][0] | ||
times = data_s[:,0] | ||
data_sV = sim.samples(hdl_sV)[0][0] | ||
tmp_data = sim.samples(hdl_sV_all)[0][0] | ||
data_sV_total = np.zeros_like(tmp_data[:, 0]) | ||
num_cvs = len(tmp_data[0,:])-1 | ||
for i in range(len(tmp_data[0,:])-1): # compute the total amount of particles by summing over all CVs of the whole neuron | ||
data_sV_total += tmp_data[:, i+1] | ||
|
||
s_lim_expected = (inc_0+inc_1-dec_0) / volume_tot # total particle amount of s divided by total volume | ||
s_max_expected = (inc_0+inc_1) / volume_tot # total particle amount of s divided by total volume | ||
|
||
if num_segs < 3: | ||
self.assertEqual(morph.num_branches, 1) # expected number of branches: 1 | ||
else: | ||
self.assertEqual(morph.num_branches, 3) # expected number of branches: 3 | ||
self.assertEqual(num_cvs, num_segs*num_cvs_per_seg) # expected total number of CVs | ||
self.assertAlmostEqual(data_sV[-1,1]/volume_per_cv, s_lim_expected, delta=self.dev*s_lim_expected) # lim_{t->inf}(s) [estimated] | ||
self.assertAlmostEqual(data_s[-1,1], s_lim_expected, delta=self.dev*s_lim_expected) # lim_{t->inf}(s) [direct] | ||
self.assertAlmostEqual(np.max(data_s[:,1]), s_max_expected, delta=self.dev*s_max_expected) # max_{t}(s) [direct] | ||
self.assertAlmostEqual(data_sV[-1,1]*num_segs*num_cvs_per_seg, inc_0+inc_1-dec_0, delta=self.dev*(inc_0+inc_1-dec_0)) # lim_{t->inf}(s⋅V) [estimated] | ||
self.assertAlmostEqual(data_sV_total[-1], inc_0+inc_1-dec_0, delta=self.dev*(inc_0+inc_1-dec_0)) # lim_{t->inf}(s⋅V) [direct] | ||
self.assertAlmostEqual(np.max(data_sV_total), inc_0+inc_1, delta=self.dev*(inc_0+inc_1)) # max_{t}(s⋅V) [direct] | ||
|
||
# Test: simulations with equal radii | ||
@fixtures.diffusion_catalogue() | ||
def test_diffusion_equal_radii(self, diffusion_catalogue): | ||
|
||
self.simulate_diffusion(diffusion_catalogue, 1, 600, 10, 4) # 1 segment with radius 4 µm | ||
self.simulate_diffusion(diffusion_catalogue, 2, 300, 10, 4, 4) # 2 segments with radius 4 µm | ||
self.simulate_diffusion(diffusion_catalogue, 3, 200, 10, 4, 4, 4) # 3 segments with radius 4 µm | ||
|
||
''' TODO: not succeeding as of Arbor v0.9.0: | ||
# Test: simulations with different radii | ||
@fixtures.diffusion_catalogue() | ||
def test_diffusion_different_radii(self, diffusion_catalogue): | ||
self.simulate_diffusion(diffusion_catalogue, 2, 300, 10, 4, 6) # 2 segments with radius 4 µm and 6 µm | ||
self.simulate_diffusion(diffusion_catalogue, 3, 200, 10, 4, 6, 6) # 3 segments with radius 4 µm and 6 µm | ||
''' | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
NEURON { | ||
SUFFIX neuron_with_diffusion | ||
USEION s READ sd | ||
} | ||
|
||
PARAMETER { | ||
area : surface area of the CV (in µm^2, internal variable) | ||
diam : CV diameter (in µm, internal variable) | ||
} | ||
|
||
ASSIGNED { | ||
volume : volume of the CV (conversion factor between concentration and particle amount, in µm^3) | ||
sV : particle amount in the CV (in 1e-18 mol) | ||
} | ||
|
||
INITIAL { | ||
volume = area*diam/4 : = area*r/2 = 2*pi*r*h*r/2 = pi*r^2*h | ||
sV = sd * volume | ||
} | ||
|
||
BREAKPOINT { | ||
sV = sd * volume : read and normalize particle amount | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
NEURON { | ||
POINT_PROCESS synapse_with_diffusion | ||
USEION s WRITE sd | ||
} | ||
|
||
PARAMETER { | ||
area : surface area of the CV (in µm^2, internal variable) | ||
diam : CV diameter (in µm, internal variable) | ||
} | ||
|
||
ASSIGNED { | ||
volume : volume of the CV (conversion factor between concentration and particle amount, in µm^3) | ||
} | ||
|
||
INITIAL { | ||
volume = area*diam/4 : = area*r/2 = 2*pi*r*h*r/2 = pi*r^2*h | ||
} | ||
|
||
BREAKPOINT { | ||
} | ||
|
||
NET_RECEIVE(weight) { | ||
sd = sd + weight * area / volume / 1000 | ||
} |