-
Notifications
You must be signed in to change notification settings - Fork 260
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add llama2 examples for smoothquant (#1470)
Signed-off-by: chensuyue <[email protected]> Co-authored-by: Lu, Yintong <[email protected]>
- Loading branch information
1 parent
18dd8f8
commit 111b3ce
Showing
4 changed files
with
288 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
30 changes: 30 additions & 0 deletions
30
...ytorch/nlp/huggingface_models/language-modeling/quantization/llm/ipex/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
Step-by-Step | ||
============ | ||
This document describes the step-by-step instructions to run llama2 SmoothQuant with Intel® Neural Compressor and Intel® Extension for PyTorch. | ||
|
||
# Prerequisite | ||
``` | ||
# Installation dependencies | ||
pip install -r requirements.txt | ||
``` | ||
|
||
# Run Quantization | ||
|
||
## Llama-2-7b | ||
```bash | ||
python run_llama2_sq.py \ | ||
--model-id meta-llama/Llama-2-7b-hf \ | ||
--batch-size 56 \ | ||
--sq-recipes "llama2-7b" | ||
``` | ||
## Llama-2-13b | ||
```bash | ||
python run_llama2_sq.py \ | ||
--model-id meta-llama/Llama-2-13b-hf \ | ||
--batch-size 56 \ | ||
--sq-recipes "llama2-13b" \ | ||
--padding | ||
``` | ||
> Notes: | ||
> - INT8 model will be saved into "./saved_results" including "./saved_results/best_configure.json" and "./saved_results/best_model.pt", which can be loaded and evaluated by IPEX. | ||
> - Parameter "--sq-recipes" decides the recipes used to do quantize, details can be found in scripts. |
10 changes: 10 additions & 0 deletions
10
...s/pytorch/nlp/huggingface_models/language-modeling/quantization/llm/ipex/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
neural-compressor==2.4 | ||
transformers==4.32.0 | ||
datasets | ||
accelerate | ||
sentencepiece | ||
protobuf | ||
--extra-index-url https://download.pytorch.org/whl/cpu | ||
torch==2.1.0+cpu | ||
intel-extension-for-pytorch==2.1.0 | ||
|
240 changes: 240 additions & 0 deletions
240
...s/pytorch/nlp/huggingface_models/language-modeling/quantization/llm/ipex/run_llama2_sq.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
import argparse | ||
|
||
from datasets import load_dataset | ||
from transformers import LlamaForCausalLM, LlamaTokenizer, AutoConfig | ||
|
||
import torch | ||
from torch.nn.functional import pad | ||
from torch.utils.data import DataLoader | ||
|
||
import intel_extension_for_pytorch as ipex | ||
|
||
parser = argparse.ArgumentParser('LLaMA generation script (int8 path)', add_help=False) | ||
|
||
parser.add_argument( | ||
"-m", "--model-id", default=None, type=str, required=True, help="your llama model" | ||
) | ||
parser.add_argument( | ||
"--sq-recipes", default=None, type=str, required=True, help="llama2-7b or llama2-13b" | ||
) | ||
parser.add_argument( | ||
"--max-new-tokens", default=32, type=int, help="output max new tokens" | ||
) | ||
parser.add_argument("--dataset", nargs="?", default="NeelNanda/pile-10k") | ||
parser.add_argument("--output-dir", nargs="?", default="./saved_results") | ||
|
||
parser.add_argument( | ||
"--int8-bf16-mixed", | ||
action="store_true", | ||
help="by default it is int8-fp32 mixed, to enable int8 mixed amp bf16 (work on platforms like SPR)", | ||
) | ||
parser.add_argument("--input-tokens", default="32", type=str) | ||
parser.add_argument("--prompt", default=None, type=str) | ||
parser.add_argument("--padding", action="store_true", help="whether do padding in calib_dataloader") | ||
parser.add_argument("--batch-size", default=1, type=int, help="batch size") | ||
parser.add_argument("--alpha", default=0.8, type=float, help="alpha value for smoothquant") | ||
parser.add_argument("--greedy", action="store_true") | ||
|
||
args = parser.parse_args() | ||
|
||
try: | ||
ipex._C.disable_jit_linear_repack() | ||
except Exception: | ||
pass | ||
|
||
# amp autocast | ||
if args.int8_bf16_mixed: | ||
amp_enabled = True | ||
amp_dtype = torch.bfloat16 | ||
else: | ||
amp_enabled = False | ||
amp_dtype = torch.float32 | ||
|
||
num_beams = 1 if args.greedy else 4 | ||
|
||
# load model | ||
config = AutoConfig.from_pretrained(args.model_id, torchscript=True) | ||
if not hasattr(config, "text_max_length") and args.prompt is None: | ||
config.text_max_length = int(args.input_tokens) + int(args.max_new_tokens) | ||
|
||
user_model = LlamaForCausalLM.from_pretrained( | ||
args.model_id, config=config, low_cpu_mem_usage=True, torch_dtype=torch.float | ||
) | ||
|
||
tokenizer = LlamaTokenizer.from_pretrained(args.model_id) | ||
print("Data type of the model:", user_model.dtype) | ||
|
||
# dummy past key value | ||
beam_idx_tmp = torch.zeros( | ||
(2048, int(args.batch_size * num_beams)), dtype=torch.long | ||
).contiguous() | ||
global_past_key_value = [ | ||
( | ||
torch.zeros(1, 0, 0, 1, dtype=torch.long).contiguous(), | ||
torch.zeros( | ||
[ | ||
1, | ||
user_model.config.num_attention_heads, | ||
1, | ||
int( | ||
user_model.config.hidden_size | ||
/ user_model.config.num_attention_heads | ||
), | ||
] | ||
).contiguous(), | ||
torch.zeros( | ||
[ | ||
1, | ||
user_model.config.num_attention_heads, | ||
1, | ||
int( | ||
user_model.config.hidden_size | ||
/ user_model.config.num_attention_heads | ||
), | ||
] | ||
).contiguous(), | ||
beam_idx_tmp, | ||
) | ||
for i in range(user_model.config.num_hidden_layers) | ||
] | ||
|
||
|
||
class Evaluator: | ||
|
||
def __init__(self, dataset, tokenizer, batch_size=1, pad_val=1, pad_max=512): | ||
self.dataset = dataset | ||
self.tokenizer = tokenizer | ||
self.batch_size = batch_size | ||
self.pad_val = pad_val | ||
self.pad_max = pad_max | ||
|
||
# tokenize the dataset | ||
self.dataset = self.dataset.map(self.tokenize_function, batched=True) | ||
self.dataset.set_format(type="torch", columns=["input_ids"]) | ||
|
||
@torch.no_grad() | ||
def tokenize_function(self, examples): | ||
if "prompt" in examples: | ||
example = self.tokenizer(examples["prompt"]) | ||
elif "text" in examples: | ||
example = self.tokenizer(examples["text"]) | ||
elif "code" in examples: | ||
example = self.tokenizer(examples["code"]) | ||
return example | ||
|
||
@torch.no_grad() | ||
def collate_batch(self, batch): | ||
position_ids_padded = [] | ||
input_ids_padded = [] | ||
last_ind = [] | ||
attention_mask_padded = [] | ||
for text in batch: | ||
input_ids = text["input_ids"] | ||
if not args.padding: | ||
input_ids = ( | ||
input_ids[: int(self.pad_max)] | ||
if len(input_ids) > int(self.pad_max) | ||
else input_ids | ||
) #no_padding | ||
else: | ||
pad_len = self.pad_max - input_ids.shape[0] | ||
input_ids = pad(input_ids, (0, pad_len), value=self.pad_val) | ||
last_ind.append(input_ids.shape[0] - 1) | ||
attention_mask = torch.ones(len(input_ids)) | ||
position_ids = torch.arange(len(input_ids)) | ||
input_ids_padded.append(input_ids) | ||
attention_mask_padded.append(attention_mask) | ||
position_ids_padded.append(position_ids) | ||
return ( | ||
( | ||
torch.vstack(input_ids_padded), | ||
torch.vstack(attention_mask_padded), | ||
torch.vstack(position_ids_padded), | ||
tuple(global_past_key_value), | ||
), | ||
torch.tensor(last_ind), | ||
) | ||
|
||
|
||
calib_dataset = load_dataset(args.dataset, split="train") | ||
user_model.eval() | ||
if args.sq_recipes == "llama2-7b": | ||
pad_max = 2048 | ||
elif args.sq_recipes == "llama2-13b": | ||
pad_max = 1024 | ||
else: | ||
pad_max = 512 | ||
calib_evaluator = Evaluator(calib_dataset, tokenizer, args.batch_size, pad_max=pad_max) | ||
calib_dataloader = DataLoader( | ||
calib_evaluator.dataset, | ||
batch_size=1, | ||
shuffle=False, | ||
collate_fn=calib_evaluator.collate_batch, | ||
) | ||
|
||
|
||
def calib_func(prepared_model): | ||
for i, ( | ||
(input_ids, attention_mask, position_ids, past_key_values), | ||
last_ind, | ||
) in enumerate(calib_dataloader): | ||
if i == 512: | ||
break | ||
prepared_model( | ||
input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
) | ||
|
||
|
||
example_inputs = None | ||
for i, ( | ||
(input_ids, attention_mask, position_ids, past_key_values), | ||
last_ind, | ||
) in enumerate(calib_dataloader): | ||
example_inputs = (input_ids, attention_mask, position_ids, past_key_values) | ||
break | ||
|
||
qconfig = ipex.quantization.get_smooth_quant_qconfig_mapping(alpha=args.alpha) | ||
user_model = ipex.optimize_transformers( | ||
user_model.eval(), | ||
dtype=amp_dtype, | ||
quantization_config=qconfig, | ||
inplace=True, | ||
deployment_mode=False, | ||
) | ||
|
||
# steps for SmoothQuant with Intel® Neural Compressor | ||
from neural_compressor import PostTrainingQuantConfig, quantization | ||
|
||
# quantization recipes | ||
excluded_precisions = [] if args.int8_bf16_mixed else ["bf16"] | ||
op_type_dict = {"add": {"weight": {"dtype": ["fp32"]}, "activation": {"dtype": ["fp32"]}}} | ||
recipes = {} | ||
if args.sq_recipes == "llama2-7b": | ||
recipes = {"smooth_quant": True, "smooth_quant_args": {'alpha': 'auto', 'folding': False, 'default_alpha': 0.8, | ||
'auto_alpha_args': {"alpha_min": 0.8, "alpha_max": 0.99, | ||
"alpha_step": 0.01, | ||
"shared_criterion": "mean"}}} | ||
elif args.sq_recipes == "llama2-13b": | ||
recipes = {"smooth_quant": True, "smooth_quant_args": {'alpha': 'auto', 'folding': False, 'default_alpha': 0.8, | ||
'auto_alpha_args': {"alpha_min": 0.75, "alpha_max": 0.99, | ||
"alpha_step": 0.01, | ||
"shared_criterion": "max"}}} | ||
|
||
|
||
conf = PostTrainingQuantConfig( | ||
backend="ipex", | ||
excluded_precisions=excluded_precisions, | ||
op_type_dict=op_type_dict, | ||
recipes=recipes, | ||
example_inputs=example_inputs, | ||
) | ||
q_model = quantization.fit( | ||
user_model, | ||
conf, | ||
calib_dataloader=calib_dataloader, | ||
calib_func=calib_func, | ||
) | ||
q_model.save(args.output_dir) |