Skip to content

htw2012/tf-tutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

tf-tutorials

some learned cases about using tensorflow

Content

  • Linear_regression

    • data

      randomly generate some points

    • model

      Y=WX+b,where y is a real value

    • API

      tf.mul(X, W) + b

  • Logistic_Regression

    • data

      download from https://www.kaggle.com/c/titanic/data. The Attribute like below:

      passenger_id, survived, pclass, name, sex, age, sibsp, parch, ticket, fare, cabin, embarked
      

      Just choose the passenger_id, survived, pclass,to predict the sex.

    • model

      Y=1/(1+e^(WX+b)),where y is 0 or 1.

    • API

      tf.nn.sigmoid_cross_entropy_with_logits(tf.matmul(x_in, W) + b, y_in)

  • Softmax_Classification

    • data

      iris data,it's UCI data,also you can download from https://www.kaggle.com/uciml/iris

    • model

      Y=1/(1+e^(WX+b)),where you can use multiple labels

    • API

      tf.nn.sparse_softmax_cross_entropy_with_logits tf.nn.softmax_cross_entropy_with_logit

About

some learned cases about using tensorflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages