-
Notifications
You must be signed in to change notification settings - Fork 85
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
modify reading data way and add inference test (#50)
- Loading branch information
Showing
3 changed files
with
148 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
# Copyright 2021 AlQuraishi Laboratory | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
|
||
|
||
def random_template_feats(n_templ, n, batch_size=None): | ||
b = [] | ||
if batch_size is not None: | ||
b.append(batch_size) | ||
batch = { | ||
"template_mask": np.random.randint(0, 2, (*b, n_templ)), | ||
"template_pseudo_beta_mask": np.random.randint(0, 2, (*b, n_templ, n)), | ||
"template_pseudo_beta": np.random.rand(*b, n_templ, n, 3), | ||
"template_aatype": np.random.randint(0, 22, (*b, n_templ, n)), | ||
"template_all_atom_mask": np.random.randint( | ||
0, 2, (*b, n_templ, n, 37) | ||
), | ||
"template_all_atom_positions": | ||
np.random.rand(*b, n_templ, n, 37, 3) * 10, | ||
"template_torsion_angles_sin_cos": | ||
np.random.rand(*b, n_templ, n, 7, 2), | ||
"template_alt_torsion_angles_sin_cos": | ||
np.random.rand(*b, n_templ, n, 7, 2), | ||
"template_torsion_angles_mask": | ||
np.random.rand(*b, n_templ, n, 7), | ||
} | ||
batch = {k: v.astype(np.float32) for k, v in batch.items()} | ||
batch["template_aatype"] = batch["template_aatype"].astype(np.int64) | ||
return batch | ||
|
||
|
||
def random_extra_msa_feats(n_extra, n, batch_size=None): | ||
b = [] | ||
if batch_size is not None: | ||
b.append(batch_size) | ||
batch = { | ||
"extra_msa": np.random.randint(0, 22, (*b, n_extra, n)).astype( | ||
np.int64 | ||
), | ||
"extra_has_deletion": np.random.randint(0, 2, (*b, n_extra, n)).astype( | ||
np.float32 | ||
), | ||
"extra_deletion_value": np.random.rand(*b, n_extra, n).astype( | ||
np.float32 | ||
), | ||
"extra_msa_mask": np.random.randint(0, 2, (*b, n_extra, n)).astype( | ||
np.float32 | ||
), | ||
} | ||
return batch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# Copyright 2021 AlQuraishi Laboratory | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import time | ||
import torch | ||
import ml_collections as mlc | ||
|
||
import fastfold | ||
from fastfold.model.hub import AlphaFold | ||
from fastfold.config import model_config | ||
from fastfold.model.fastnn import set_chunk_size | ||
from fastfold.utils import inject_fastnn | ||
from test_data_utils import random_extra_msa_feats, random_template_feats | ||
from fastfold.data import data_transforms | ||
from fastfold.utils.tensor_utils import tensor_tree_map | ||
|
||
|
||
consts = mlc.ConfigDict( | ||
{ | ||
"n_res": 11, | ||
"n_seq": 13, | ||
"n_templ": 3, | ||
"n_extra": 17, | ||
} | ||
) | ||
|
||
def inference(): | ||
fastfold.distributed.init_dap() | ||
|
||
n_seq = consts.n_seq | ||
n_templ = consts.n_templ | ||
n_res = consts.n_res | ||
n_extra_seq = consts.n_extra | ||
|
||
|
||
config = model_config('model_1') | ||
model = AlphaFold(config) | ||
model = inject_fastnn(model) | ||
model.eval() | ||
model.cuda() | ||
|
||
set_chunk_size(model.globals.chunk_size) | ||
|
||
batch = {} | ||
tf = torch.randint(config.model.input_embedder.tf_dim - 1, size=(n_res,)) | ||
batch["target_feat"] = torch.nn.functional.one_hot( | ||
tf, config.model.input_embedder.tf_dim).float() | ||
batch["aatype"] = torch.argmax(batch["target_feat"], dim=-1) | ||
batch["residue_index"] = torch.arange(n_res) | ||
batch["msa_feat"] = torch.rand((n_seq, n_res, config.model.input_embedder.msa_dim)) | ||
t_feats = random_template_feats(n_templ, n_res) | ||
batch.update({k: torch.tensor(v) for k, v in t_feats.items()}) | ||
extra_feats = random_extra_msa_feats(n_extra_seq, n_res) | ||
batch.update({k: torch.tensor(v) for k, v in extra_feats.items()}) | ||
batch["msa_mask"] = torch.randint(low=0, high=2, size=(n_seq, n_res)).float() | ||
batch["seq_mask"] = torch.randint(low=0, high=2, size=(n_res,)).float() | ||
batch.update(data_transforms.make_atom14_masks(batch)) | ||
batch["no_recycling_iters"] = torch.tensor(2.) | ||
add_recycling_dims = lambda t: ( | ||
t.unsqueeze(-1).expand(*t.shape, config.data.common.max_recycling_iters)) | ||
batch = tensor_tree_map(add_recycling_dims, batch) | ||
|
||
|
||
with torch.no_grad(): | ||
batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()} | ||
t = time.perf_counter() | ||
out = model(batch) | ||
print(f"Inference time: {time.perf_counter() - t}") | ||
|
||
if __name__ == "__main__": | ||
inference() | ||
print("Inference Test Passed!") |