Skip to content

Commit

Permalink
modify reading data way and add inference test (#50)
Browse files Browse the repository at this point in the history
  • Loading branch information
Gy-Lu authored Aug 23, 2022
1 parent 03a24ef commit a37c8b4
Show file tree
Hide file tree
Showing 3 changed files with 148 additions and 4 deletions.
7 changes: 3 additions & 4 deletions inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
from fastfold.model.fastnn import set_chunk_size
from fastfold.data import data_pipeline, feature_pipeline, templates
from fastfold.utils import inject_fastnn
from fastfold.data.parsers import parse_fasta
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map

Expand Down Expand Up @@ -141,10 +142,8 @@ def main(args):

# Gather input sequences
with open(args.fasta_path, "r") as fp:
lines = [l.strip() for l in fp.readlines()]

tags, seqs = lines[::2], lines[1::2]
tags = [l[1:] for l in tags]
fasta = fp.read()
seqs, tags = parse_fasta(fasta)

for tag, seq in zip(tags, seqs):
batch = [None]
Expand Down
62 changes: 62 additions & 0 deletions tests/test_data_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np


def random_template_feats(n_templ, n, batch_size=None):
b = []
if batch_size is not None:
b.append(batch_size)
batch = {
"template_mask": np.random.randint(0, 2, (*b, n_templ)),
"template_pseudo_beta_mask": np.random.randint(0, 2, (*b, n_templ, n)),
"template_pseudo_beta": np.random.rand(*b, n_templ, n, 3),
"template_aatype": np.random.randint(0, 22, (*b, n_templ, n)),
"template_all_atom_mask": np.random.randint(
0, 2, (*b, n_templ, n, 37)
),
"template_all_atom_positions":
np.random.rand(*b, n_templ, n, 37, 3) * 10,
"template_torsion_angles_sin_cos":
np.random.rand(*b, n_templ, n, 7, 2),
"template_alt_torsion_angles_sin_cos":
np.random.rand(*b, n_templ, n, 7, 2),
"template_torsion_angles_mask":
np.random.rand(*b, n_templ, n, 7),
}
batch = {k: v.astype(np.float32) for k, v in batch.items()}
batch["template_aatype"] = batch["template_aatype"].astype(np.int64)
return batch


def random_extra_msa_feats(n_extra, n, batch_size=None):
b = []
if batch_size is not None:
b.append(batch_size)
batch = {
"extra_msa": np.random.randint(0, 22, (*b, n_extra, n)).astype(
np.int64
),
"extra_has_deletion": np.random.randint(0, 2, (*b, n_extra, n)).astype(
np.float32
),
"extra_deletion_value": np.random.rand(*b, n_extra, n).astype(
np.float32
),
"extra_msa_mask": np.random.randint(0, 2, (*b, n_extra, n)).astype(
np.float32
),
}
return batch
83 changes: 83 additions & 0 deletions tests/test_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import torch
import ml_collections as mlc

import fastfold
from fastfold.model.hub import AlphaFold
from fastfold.config import model_config
from fastfold.model.fastnn import set_chunk_size
from fastfold.utils import inject_fastnn
from test_data_utils import random_extra_msa_feats, random_template_feats
from fastfold.data import data_transforms
from fastfold.utils.tensor_utils import tensor_tree_map


consts = mlc.ConfigDict(
{
"n_res": 11,
"n_seq": 13,
"n_templ": 3,
"n_extra": 17,
}
)

def inference():
fastfold.distributed.init_dap()

n_seq = consts.n_seq
n_templ = consts.n_templ
n_res = consts.n_res
n_extra_seq = consts.n_extra


config = model_config('model_1')
model = AlphaFold(config)
model = inject_fastnn(model)
model.eval()
model.cuda()

set_chunk_size(model.globals.chunk_size)

batch = {}
tf = torch.randint(config.model.input_embedder.tf_dim - 1, size=(n_res,))
batch["target_feat"] = torch.nn.functional.one_hot(
tf, config.model.input_embedder.tf_dim).float()
batch["aatype"] = torch.argmax(batch["target_feat"], dim=-1)
batch["residue_index"] = torch.arange(n_res)
batch["msa_feat"] = torch.rand((n_seq, n_res, config.model.input_embedder.msa_dim))
t_feats = random_template_feats(n_templ, n_res)
batch.update({k: torch.tensor(v) for k, v in t_feats.items()})
extra_feats = random_extra_msa_feats(n_extra_seq, n_res)
batch.update({k: torch.tensor(v) for k, v in extra_feats.items()})
batch["msa_mask"] = torch.randint(low=0, high=2, size=(n_seq, n_res)).float()
batch["seq_mask"] = torch.randint(low=0, high=2, size=(n_res,)).float()
batch.update(data_transforms.make_atom14_masks(batch))
batch["no_recycling_iters"] = torch.tensor(2.)
add_recycling_dims = lambda t: (
t.unsqueeze(-1).expand(*t.shape, config.data.common.max_recycling_iters))
batch = tensor_tree_map(add_recycling_dims, batch)


with torch.no_grad():
batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
t = time.perf_counter()
out = model(batch)
print(f"Inference time: {time.perf_counter() - t}")

if __name__ == "__main__":
inference()
print("Inference Test Passed!")

0 comments on commit a37c8b4

Please sign in to comment.