Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/pandas api idxmax #25

Merged
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions docs/user-guide/advanced/Pandas_API.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2373,6 +2373,72 @@
"tab.max()"
]
},
{
"cell_type": "markdown",
"id": "d98b298c",
"metadata": {},
"source": [
"### Table.idxmax()\n",
"\n",
"```\n",
"Table.idxmax(axis=0, skipna=True, numeric_only=False)\n",
"```\n",
"\n",
"Return index of first occurrence of maximum over requested axis.\n",
tortolavivo23 marked this conversation as resolved.
Show resolved Hide resolved
"\n",
"**Parameters:**\n",
"\n",
"| Name | Type | Description | Default |\n",
"| :----------: | :--: | :------------------------------------------------------------------------------- | :-----: |\n",
"| axis | int | The axis to calculate the idxmax across 0 is columns, 1 is rows. | 0 |\n",
"| skipna | bool | Ignore any null values along the axis. | True |\n",
"| numeric_only | bool | Only use columns of the table that are of a numeric data type. | False |\n",
"\n",
"**Returns:**\n",
"\n",
"| Type | Description |\n",
"| :----------------: | :------------------------------------------------------------------- |\n",
"| Dictionary | A dictionary where the key represents the column name / row number and the values are the result of calling `idxmax` on that column / row. |"
]
},
{
"cell_type": "markdown",
"id": "143f5483",
"metadata": {},
"source": [
"**Examples:**\n",
"\n",
"Calculate the idxmax across the columns of a table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da7cbf8f",
"metadata": {},
"outputs": [],
"source": [
"tab.idxmax()"
]
},
tortolavivo23 marked this conversation as resolved.
Show resolved Hide resolved
{
"cell_type": "markdown",
"id": "fb531e00",
"metadata": {},
"source": [
"Calculate the idxmax across the rows of a table using only columns thar are of a numeric data type"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9907226a",
"metadata": {},
"outputs": [],
"source": [
"tab.idxmax(axis=1, numeric_only=True)"
]
},
{
"cell_type": "markdown",
"id": "301ab2c2",
Expand Down
26 changes: 19 additions & 7 deletions src/pykx/pandas_api/pandas_meta.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ def preparse_computations(tab, axis=0, skipna=True, numeric_only=False, bool_onl
skipna,
axis
)
return (res, cols if axis == 0 else q.til(len(res)))
return (res, cols if axis == 0 else q.til(len(res)), cols)


# The simple computation functions all return a tuple of the results and the col names the results
Expand Down Expand Up @@ -212,33 +212,45 @@ def abs(self, numeric_only=False):

@convert_result
def all(self, axis=0, bool_only=False, skipna=True):
res, cols = preparse_computations(self, axis, skipna, bool_only=bool_only)
res, cols, _ = preparse_computations(self, axis, skipna, bool_only=bool_only)
return (q('{"b"$x}', [all(x) for x in res]), cols)

@convert_result
def any(self, axis=0, bool_only=False, skipna=True):
res, cols = preparse_computations(self, axis, skipna, bool_only=bool_only)
res, cols, _ = preparse_computations(self, axis, skipna, bool_only=bool_only)
return (q('{"b"$x}', [any(x) for x in res]), cols)

@convert_result
def max(self, axis=0, skipna=True, numeric_only=False):
res, cols = preparse_computations(self, axis, skipna, numeric_only)
res, cols, _ = preparse_computations(self, axis, skipna, numeric_only)
return (q(
'{[row] {$[11h=type x; {[x1; y1] $[x1 > y1; x1; y1]} over x; max x]} each row}',
res
), cols)

@convert_result
def min(self, axis=0, skipna=True, numeric_only=False):
res, cols = preparse_computations(self, axis, skipna, numeric_only)
res, cols, _ = preparse_computations(self, axis, skipna, numeric_only)
return (q(
'{[row] {$[11h=type x; {[x1; y1] $[x1 < y1; x1; y1]} over x; min x]} each row}',
res
), cols)

@convert_result
def idxmax(self, axis=0, skipna=True, numeric_only=False):
tab = self
axis = q('{$[11h~type x; `index`columns?x; x]}', axis)
res, cols, ix = preparse_computations(tab, axis, skipna, numeric_only)
return (q(
'''{[row;tab;axis]
row:{$[11h~type x; {[x1; y1] $[x1 > y1; x1; y1]} over x; max x]} each row;
m:$[0~axis; (::); flip] value flip tab;
$[0~axis; (::); cols tab] m {$[abs type y;x]?y}' row}
''', res, tab[ix], axis), cols)

@convert_result
def prod(self, axis=0, skipna=True, numeric_only=False, min_count=0):
res, cols = preparse_computations(self, axis, skipna, numeric_only)
res, cols, _ = preparse_computations(self, axis, skipna, numeric_only)
return (q(
'{[row; minc] {$[y > 0; $[y>count[x]; 0N; prd x]; prd x]}[;minc] each row}',
res,
Expand All @@ -247,7 +259,7 @@ def prod(self, axis=0, skipna=True, numeric_only=False, min_count=0):

@convert_result
def sum(self, axis=0, skipna=True, numeric_only=False, min_count=0):
res, cols = preparse_computations(self, axis, skipna, numeric_only)
res, cols, _ = preparse_computations(self, axis, skipna, numeric_only)
return (q(
'{[row; minc]'
'{$[y > 0;'
Expand Down
23 changes: 23 additions & 0 deletions tests/test_pandas_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -1811,6 +1811,29 @@ def test_pandas_max(q):
assert float(qmax[i]) == float(pmax[i])


def test_pandas_idxmax(q):
tab = q('([] sym: 100?`foo`bar`baz`qux; price: 250.0f - 100?500.0f; ints: 100 - 100?200)')
df = tab.pd()

p_m = df.idxmax()
q_m = tab.idxmax()
for c in q.key(q_m).py():
assert p_m[c] == q_m[c].py()

q_m = tab.idxmax(axis=1, numeric_only=True, skipna=True)
p_m = df.idxmax(axis=1, numeric_only=True, skipna=True)
for c in q.key(q_m).py():
assert p_m[c] == q_m[c].py()

tab = q('([]price: 250.0f - 100?500.0f; ints: 100 - 100?200)')
df = tab.pd()

q_m = tab.idxmax(axis=1)
p_m = df.idxmax(axis=1)
for c in q.key(q_m).py():
assert p_m[c] == q_m[c].py()


def test_pandas_all(q):
tab = q(
'([] sym: 100?`foo`bar`baz`qux; price: 250.0f - 100?500.0f; ints: 100 - 100?200;'
Expand Down
Loading