-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #17581 from kostrykin/files_assertions_images
Add content assertion XML tags for test output verification using images
- Loading branch information
Showing
5 changed files
with
747 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,289 @@ | ||
import io | ||
from typing import ( | ||
Any, | ||
List, | ||
Optional, | ||
Tuple, | ||
TYPE_CHECKING, | ||
Union, | ||
) | ||
|
||
from ._util import _assert_number | ||
|
||
try: | ||
import numpy | ||
except ImportError: | ||
pass | ||
try: | ||
from PIL import Image | ||
except ImportError: | ||
pass | ||
|
||
if TYPE_CHECKING: | ||
import numpy.typing | ||
|
||
|
||
def _assert_float( | ||
actual: float, | ||
label: str, | ||
tolerance: Union[float, str], | ||
expected: Optional[Union[float, str]] = None, | ||
range_min: Optional[Union[float, str]] = None, | ||
range_max: Optional[Union[float, str]] = None, | ||
) -> None: | ||
|
||
# Perform `tolerance` based check. | ||
if expected is not None: | ||
assert abs(actual - float(expected)) <= float( | ||
tolerance | ||
), f"Wrong {label}: {actual} (expected {expected} ±{tolerance})" | ||
|
||
# Perform `range_min` based check. | ||
if range_min is not None: | ||
assert actual >= float(range_min), f"Wrong {label}: {actual} (must be {range_min} or larger)" | ||
|
||
# Perform `range_max` based check. | ||
if range_max is not None: | ||
assert actual <= float(range_max), f"Wrong {label}: {actual} (must be {range_max} or smaller)" | ||
|
||
|
||
def assert_has_image_width( | ||
output_bytes: bytes, | ||
width: Optional[Union[int, str]] = None, | ||
delta: Union[int, str] = 0, | ||
min: Optional[Union[int, str]] = None, | ||
max: Optional[Union[int, str]] = None, | ||
negate: Union[bool, str] = False, | ||
) -> None: | ||
""" | ||
Asserts the specified output is an image and has a width of the specified value. | ||
""" | ||
buf = io.BytesIO(output_bytes) | ||
with Image.open(buf) as im: | ||
_assert_number( | ||
im.size[0], | ||
width, | ||
delta, | ||
min, | ||
max, | ||
negate, | ||
"{expected} width {n}+-{delta}", | ||
"{expected} width to be in [{min}:{max}]", | ||
) | ||
|
||
|
||
def assert_has_image_height( | ||
output_bytes: bytes, | ||
height: Optional[Union[int, str]] = None, | ||
delta: Union[int, str] = 0, | ||
min: Optional[Union[int, str]] = None, | ||
max: Optional[Union[int, str]] = None, | ||
negate: Union[bool, str] = False, | ||
) -> None: | ||
""" | ||
Asserts the specified output is an image and has a height of the specified value. | ||
""" | ||
buf = io.BytesIO(output_bytes) | ||
with Image.open(buf) as im: | ||
_assert_number( | ||
im.size[1], | ||
height, | ||
delta, | ||
min, | ||
max, | ||
negate, | ||
"{expected} height {n}+-{delta}", | ||
"{expected} height to be in [{min}:{max}]", | ||
) | ||
|
||
|
||
def assert_has_image_channels( | ||
output_bytes: bytes, | ||
channels: Optional[Union[int, str]] = None, | ||
delta: Union[int, str] = 0, | ||
min: Optional[Union[int, str]] = None, | ||
max: Optional[Union[int, str]] = None, | ||
negate: Union[bool, str] = False, | ||
) -> None: | ||
""" | ||
Asserts the specified output is an image and has the specified number of channels. | ||
""" | ||
buf = io.BytesIO(output_bytes) | ||
with Image.open(buf) as im: | ||
_assert_number( | ||
len(im.getbands()), | ||
channels, | ||
delta, | ||
min, | ||
max, | ||
negate, | ||
"{expected} image channels {n}+-{delta}", | ||
"{expected} image channels to be in [{min}:{max}]", | ||
) | ||
|
||
|
||
def _compute_center_of_mass(im_arr: "numpy.typing.NDArray") -> Tuple[float, float]: | ||
while im_arr.ndim > 2: | ||
im_arr = im_arr.sum(axis=2) | ||
im_arr = numpy.abs(im_arr) | ||
if im_arr.sum() == 0: | ||
return (numpy.nan, numpy.nan) | ||
im_arr = im_arr / im_arr.sum() | ||
yy, xx = numpy.indices(im_arr.shape) | ||
return (im_arr * xx).sum(), (im_arr * yy).sum() | ||
|
||
|
||
def _get_image( | ||
output_bytes: bytes, | ||
channel: Optional[Union[int, str]] = None, | ||
) -> "numpy.typing.NDArray": | ||
""" | ||
Returns the output image or a specific channel. | ||
""" | ||
buf = io.BytesIO(output_bytes) | ||
with Image.open(buf) as im: | ||
im_arr = numpy.array(im) | ||
|
||
# Select the specified channel (if any). | ||
if channel is not None: | ||
im_arr = im_arr[:, :, int(channel)] | ||
|
||
# Return the image | ||
return im_arr | ||
|
||
|
||
def assert_has_image_mean_intensity( | ||
output_bytes: bytes, | ||
channel: Optional[Union[int, str]] = None, | ||
mean_intensity: Optional[Union[float, str]] = None, | ||
eps: Union[float, str] = 0.01, | ||
min: Optional[Union[float, str]] = None, | ||
max: Optional[Union[float, str]] = None, | ||
) -> None: | ||
""" | ||
Asserts the specified output is an image and has the specified mean intensity value. | ||
""" | ||
im_arr = _get_image(output_bytes, channel) | ||
_assert_float( | ||
actual=im_arr.mean(), | ||
label="mean intensity", | ||
tolerance=eps, | ||
expected=mean_intensity, | ||
range_min=min, | ||
range_max=max, | ||
) | ||
|
||
|
||
def assert_has_image_center_of_mass( | ||
output_bytes: bytes, | ||
center_of_mass: Union[Tuple[float, float], str], | ||
channel: Optional[Union[int, str]] = None, | ||
eps: Union[float, str] = 0.01, | ||
) -> None: | ||
""" | ||
Asserts the specified output is an image and has the specified center of mass. | ||
""" | ||
im_arr = _get_image(output_bytes, channel) | ||
if isinstance(center_of_mass, str): | ||
center_of_mass_parts = [c.strip() for c in center_of_mass.split(",")] | ||
assert len(center_of_mass_parts) == 2 | ||
center_of_mass = (float(center_of_mass_parts[0]), float(center_of_mass_parts[1])) | ||
assert len(center_of_mass) == 2, "center_of_mass must have two components" | ||
actual_center_of_mass = _compute_center_of_mass(im_arr) | ||
distance = numpy.linalg.norm(numpy.subtract(center_of_mass, actual_center_of_mass)) | ||
assert distance <= float( | ||
eps | ||
), f"Wrong center of mass: {actual_center_of_mass} (expected {center_of_mass}, distance: {distance}, eps: {eps})" | ||
|
||
|
||
def _get_image_labels( | ||
output_bytes: bytes, | ||
channel: Optional[Union[int, str]] = None, | ||
labels: Optional[Union[str, List[int]]] = None, | ||
exclude_labels: Optional[Union[str, List[int]]] = None, | ||
) -> Tuple["numpy.typing.NDArray", List[Any]]: | ||
""" | ||
Determines the unique labels in the output image or a specific channel. | ||
""" | ||
assert labels is None or exclude_labels is None | ||
im_arr = _get_image(output_bytes, channel) | ||
|
||
def cast_label(label): | ||
label = label.strip() | ||
if numpy.issubdtype(im_arr.dtype, numpy.integer): | ||
return int(label) | ||
if numpy.issubdtype(im_arr.dtype, float): | ||
return float(label) | ||
raise AssertionError(f'Unsupported image label type: "{im_arr.dtype}"') | ||
|
||
# Determine labels present in the image. | ||
present_labels = numpy.unique(im_arr) | ||
|
||
# Apply filtering due to `labels` (keep only those). | ||
if labels is None: | ||
labels = [] | ||
if isinstance(labels, str): | ||
labels = [cast_label(label) for label in labels.split(",") if len(label) > 0] | ||
if len(labels) > 0: | ||
present_labels = [label for label in present_labels if label in labels] | ||
|
||
# Apply filtering due to `exclude_labels`. | ||
if exclude_labels is None: | ||
exclude_labels = [] | ||
if isinstance(exclude_labels, str): | ||
exclude_labels = [cast_label(label) for label in exclude_labels.split(",") if len(label) > 0] | ||
present_labels = [label for label in present_labels if label not in exclude_labels] | ||
|
||
# Return the image data and the labels. | ||
return im_arr, present_labels | ||
|
||
|
||
def assert_has_image_n_labels( | ||
output_bytes: bytes, | ||
channel: Optional[Union[int, str]] = None, | ||
exclude_labels: Optional[Union[str, List[int]]] = None, | ||
n: Optional[Union[int, str]] = None, | ||
delta: Union[int, str] = 0, | ||
min: Optional[Union[int, str]] = None, | ||
max: Optional[Union[int, str]] = None, | ||
negate: Union[bool, str] = False, | ||
) -> None: | ||
""" | ||
Asserts the specified output is an image and has the specified number of unique values (e.g., uniquely labeled objects). | ||
""" | ||
present_labels = _get_image_labels(output_bytes, channel, exclude_labels)[1] | ||
_assert_number( | ||
len(present_labels), | ||
n, | ||
delta, | ||
min, | ||
max, | ||
negate, | ||
"{expected} labels {n}+-{delta}", | ||
"{expected} labels to be in [{min}:{max}]", | ||
) | ||
|
||
|
||
def assert_has_image_mean_object_size( | ||
output_bytes: bytes, | ||
channel: Optional[Union[int, str]] = None, | ||
labels: Optional[Union[str, List[int]]] = None, | ||
exclude_labels: Optional[Union[str, List[int]]] = None, | ||
mean_object_size: Optional[Union[float, str]] = None, | ||
eps: Union[float, str] = 0.01, | ||
min: Optional[Union[float, str]] = None, | ||
max: Optional[Union[float, str]] = None, | ||
) -> None: | ||
""" | ||
Asserts the specified output is an image with labeled objects which have the specified mean size (number of pixels). | ||
""" | ||
im_arr, present_labels = _get_image_labels(output_bytes, channel, labels, exclude_labels) | ||
actual_mean_object_size = sum((im_arr == label).sum() for label in present_labels) / len(present_labels) | ||
_assert_float( | ||
actual=actual_mean_object_size, | ||
label="mean object size", | ||
tolerance=eps, | ||
expected=mean_object_size, | ||
range_min=min, | ||
range_max=max, | ||
) |
Oops, something went wrong.