Skip to content

fullflu/pydtr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pydtr

CircleCI codecov License

Description

This is a python library to conduct a dynamic treatment regime (DTR), pydtr.

A DTR is a paradigm that attempts to select optimal treatments adaptively for individual patients.

Pydtr enables you to implement DTR methods easily by using sklearn-based interfaces.

Method Single binary treatment Multiple treatments Multinomial treatment Continuous treatment Modeling flexibility Interpretability
IqLearnReg
(with sklearn)

(with pipeline)

(with arbitrary regression models)
IqLearnReg
(with statsmodels)
limited to OLS
(with confidence intervals)
GEstimation WIP WIP WIP WIP WIP

IqLearnReg means a regression method of iterative q-learning.

When there are categorical independent variables and you use a sklearn model as a regression function, you need to encode the categorical variables before using the model.

We recommend to encode categorical variables by category_encoders and combine the encoders with the sklearn model by sklearn.pipeline.

G-estimation, a famous method of DTR, is now unavailable.

Requirements

  • python>=3.6
  • pandas>=1.1.2
  • scikit-learn>=0.23.2
  • numpy>=1.19.2
  • statsmodels>=0.12.0

Installation

From pypi

pip install pydtr

From source

git clone https://github.com/fullflu/pydtr.git
cd pydtr
python setup.py install

Usage

Iterative Q Learning (IqLearnReg)

You need to import libraries and prepare data.

# import
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor

from pydtr.iqlearn.regression import IqLearnReg

# create sample dataframe
n = 10
thres = int(n / 2)
df = pd.DataFrame()
df["L1"] = np.arange(n)
df["A1"] = [0, 1] * int(n / 2)
df["A2"] = [0] * int(n / 2) + [1] * int(n / 2)
df["Y1"] = np.zeros(n)
df["Y2"] = np.zeros(n)

You can use sklearn-based models.

# set model info
model_info = [
    {
        "model": RandomForestRegressor(),
        "action_dict": {"A1": [0, 1]},
        "feature": ["L1", "A1"],
        "outcome": "Y1"
    },
    {
        "model": RandomForestRegressor(),
        "action_dict": {"A2": [0, 1]},
        "feature": ["L1", "A1", "Y1", "A2"],
        "outcome": "Y2"
    }
]
# fit model
dtr_model = IqLearnReg(
    n_stages=2,
    model_info=model_info
)
dtr_model.fit(df)

# predict optimal atcions
opt_action_stage_1 = dtr_model.predict(df, 0)
opt_action_stage_2 = dtr_model.predict(df, 1)
opt_action_all_stages = dtr_model.predict_all_stages(df)

You can also use statsmodels-based models.

# set model info
model_info = [
    {
        "model": "p_outcome ~ L1 * A1",
        "action_dict": {"A1": [0, 1]},
        "feature": ["L1", "A1"],
        "outcome": "Y1"
    },
    {
        "model": "p_outcome ~ L1 + A1 + Y1 * A2",
        "action_dict": {"A2": [0, 1]},
        "feature": ["L1", "A1", "Y1", "A2"],
        "outcome": "Y2"
    }
]
# fit model
dtr_model = IqLearnReg(
    n_stages=2,
    model_info=model_info
)
dtr_model.fit(df)

# predict optimal atcions
opt_action_stage_1 = dtr_model.predict(df, 0)
opt_action_stage_2 = dtr_model.predict(df, 1)
opt_action_all_stages = dtr_model.predict_all_stages(df)

Please see examples to get more information.

Authors

Contributors

Please feel free to create issues or to send pull-requests!

If all checkes have passed in pull-requests, I will merge and release them.

License

BSD

Structure

├── .circleci
│   ├── config.yml
├── .github
│   ├── CODEOWNERS
├── LICENSE
├── MANIFEST.IN
├── Makefile
├── README.md
├── examples
│   ├── ...several notebooks...
├── setup.cfg
├── setup.py
├── src
│   ├── pydtr
│   │   ├── __init__.py
│   │   └── iqlearn
│   │       ├── __init__.py
│   │       ├── base.py
│   │       └── regression.py
└── tests
    ├── test_iqlearn_sklearn_predict.py
    └── test_iqlearn_sm_predict.py

References

  • Chakraborty, B, Moodie, EE. Statistical Methods for Dynamic Treatment Regimes. Springer, New York, 2013.

About

Python library of Dynamic Treatment Regimes

Resources

License

Stars

Watchers

Forks

Packages

No packages published