Skip to content

Commit

Permalink
update doc pages
Browse files Browse the repository at this point in the history
  • Loading branch information
erdogant committed Oct 6, 2024
1 parent 99f459e commit fd41441
Show file tree
Hide file tree
Showing 15 changed files with 41 additions and 6 deletions.
Binary file modified docs/pages/doctrees/Continuous Data.doctree
Binary file not shown.
Binary file modified docs/pages/doctrees/bnlearn.bnlearn.doctree
Binary file not shown.
Binary file modified docs/pages/doctrees/bnlearn.structure_learning.doctree
Binary file not shown.
Binary file modified docs/pages/doctrees/environment.pickle
Binary file not shown.
Binary file modified docs/pages/doctrees/index.doctree
Binary file not shown.
2 changes: 1 addition & 1 deletion docs/pages/html/Continuous Data.html
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ <h1>Working with Continous data<a class="headerlink" href="#working-with-contino
<section id="discretize-continuous-datasets-manually">
<h1>Discretize continuous datasets manually<a class="headerlink" href="#discretize-continuous-datasets-manually" title="Link to this heading"></a></h1>
<p>Discretizing continuous datasets manually using domain knowledge involves dividing a continuous variable into a set of discrete intervals based on an understanding of the data’s context and the relationships between variables. This method allows for meaningful groupings of data points, which can simplify analysis and improve interpretability in models.</p>
<p>By leveraging expertise in the subject matter, the intervals or thresholds can be chosen to reflect real-world significance, such as categorizing age into meaningful ranges (e.g., “freezing,” “warm,” “hot”). This approach contrasts with automatic binning methods (as depicted in approach 2), such as equal-width or equal-frequency binning, where intervals may not correspond to meaningful domain-specific boundaries.</p>
<p>By leveraging expertise in the subject matter, the intervals or thresholds can be chosen to reflect real-world significance, such as categorizing weather conditions into meaningful ranges (e.g., “freezing,” “warm,” “hot”). This approach contrasts with automatic binning methods (as depicted in approach 2), such as equal-width or equal-frequency binning, where intervals may not correspond to meaningful domain-specific boundaries.</p>
<p>For instance, lets load the auto mpg data set and based on automotive standards, we can define horsepower categories:</p>
<ul class="simple">
<li><p>Low: Cars with horsepower less than 100 (typically small, fuel-efficient cars)</p></li>
Expand Down
2 changes: 1 addition & 1 deletion docs/pages/html/_sources/Continuous Data.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ Discretize continuous datasets manually

Discretizing continuous datasets manually using domain knowledge involves dividing a continuous variable into a set of discrete intervals based on an understanding of the data's context and the relationships between variables. This method allows for meaningful groupings of data points, which can simplify analysis and improve interpretability in models.

By leveraging expertise in the subject matter, the intervals or thresholds can be chosen to reflect real-world significance, such as categorizing age into meaningful ranges (e.g., "freezing," "warm," "hot"). This approach contrasts with automatic binning methods (as depicted in approach 2), such as equal-width or equal-frequency binning, where intervals may not correspond to meaningful domain-specific boundaries.
By leveraging expertise in the subject matter, the intervals or thresholds can be chosen to reflect real-world significance, such as categorizing weather conditions into meaningful ranges (e.g., "freezing," "warm," "hot"). This approach contrasts with automatic binning methods (as depicted in approach 2), such as equal-width or equal-frequency binning, where intervals may not correspond to meaningful domain-specific boundaries.

For instance, lets load the auto mpg data set and based on automotive standards, we can define horsepower categories:

Expand Down
10 changes: 10 additions & 0 deletions docs/pages/html/_sources/index.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,16 @@ BNLearn's Documentation

|python| |pypi| |docs| |LOC| |downloads_month| |downloads_total| |license| |forks| |open issues| |project status| |medium| |colab| |DOI| |donate|

.. |logo| image:: ../figs/logo.png

.. table::
:align: center

+----------+
| |logo| |
+----------+


.. tip::
* `Guide in detecting causal relationships using Bayesian Structure Learning in Python. <https://towardsdatascience.com/a-step-by-step-guide-in-detecting-causal-relationships-using-bayesian-structure-learning-in-python-c20c6b31cee5>`_
* `Guide in designing knowledge-driven models using Bayesian theorem. <https://towardsdatascience.com/a-step-by-step-guide-in-detecting-causal-relationships-using-bayesian-structure-learning-in-python-c20c6b31cee5>`_
Expand Down
6 changes: 6 additions & 0 deletions docs/pages/html/bnlearn.bnlearn.html
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,7 @@
<li class="toctree-l2"><a class="reference internal" href="#bnlearn.bnlearn.adjmat2vec"><code class="docutils literal notranslate"><span class="pre">adjmat2vec()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#bnlearn.bnlearn.check_model"><code class="docutils literal notranslate"><span class="pre">check_model()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#bnlearn.bnlearn.compare_networks"><code class="docutils literal notranslate"><span class="pre">compare_networks()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#bnlearn.bnlearn.compute_logp"><code class="docutils literal notranslate"><span class="pre">compute_logp()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#bnlearn.bnlearn.dag2adjmat"><code class="docutils literal notranslate"><span class="pre">dag2adjmat()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#bnlearn.bnlearn.df2onehot"><code class="docutils literal notranslate"><span class="pre">df2onehot()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#bnlearn.bnlearn.get_edge_properties"><code class="docutils literal notranslate"><span class="pre">get_edge_properties()</span></code></a></li>
Expand Down Expand Up @@ -297,6 +298,11 @@
</dl>
</dd></dl>

<dl class="py function">
<dt class="sig sig-object py" id="bnlearn.bnlearn.compute_logp">
<span class="sig-prename descclassname"><span class="pre">bnlearn.bnlearn.</span></span><span class="sig-name descname"><span class="pre">compute_logp</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">p_value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bnlearn.bnlearn.compute_logp" title="Link to this definition"></a></dt>
<dd></dd></dl>

<dl class="py function">
<dt class="sig sig-object py" id="bnlearn.bnlearn.dag2adjmat">
<span class="sig-prename descclassname"><span class="pre">bnlearn.bnlearn.</span></span><span class="sig-name descname"><span class="pre">dag2adjmat</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bnlearn.bnlearn.dag2adjmat" title="Link to this definition"></a></dt>
Expand Down
6 changes: 3 additions & 3 deletions docs/pages/html/bnlearn.structure_learning.html
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,7 @@
<dt>To learn model structure (a DAG) from a data set, there are three broad techniques:</dt><dd><ol class="arabic simple">
<li><p>Score-based structure learning: using scoring functions as defined in scoretype and search strategy as defined in methodtype.</p></li>
<li><p>Constraint-based structure learning (PC): Using statistics such as chi-square test for strength of edges prior the modeling.</p></li>
<li><p>Hybrid structure learning (The combination of both techniques) (MMHC)</p></li>
<li><p>Hybrid structure learning (The combination of both techniques)</p></li>
</ol>
</dd>
</dl>
Expand All @@ -216,9 +216,9 @@ <h2>Score-based Structure Learning<a class="headerlink" href="#score-based-struc
</dd>
<dt class="field-odd">param methodtype<span class="colon">:</span></dt>
<dd class="field-odd"><p>String Search strategy for structure_learning.
‘hc’ or ‘hillclimbsearch’ (default)
‘ex’ or ‘exhaustivesearch’
‘pc’ or ‘cs’ or ‘constraintsearch’
‘ex’ or ‘exhaustivesearch’
‘hc’ or ‘hillclimbsearch’ (default)
‘cl’ or ‘chow-liu’ (requires setting root_node parameter)
‘nb’ or ‘naivebayes’ (requires &lt;root_node&gt;)
‘tan’ (requires &lt;root_node&gt; and &lt;class_node&gt; parameter)
Expand Down
2 changes: 2 additions & 0 deletions docs/pages/html/genindex.html
Original file line number Diff line number Diff line change
Expand Up @@ -254,6 +254,8 @@ <h2 id="C">C</h2>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="bnlearn.bnlearn.html#bnlearn.bnlearn.compare_networks">compare_networks() (in module bnlearn.bnlearn)</a>
</li>
<li><a href="bnlearn.bnlearn.html#bnlearn.bnlearn.compute_logp">compute_logp() (in module bnlearn.bnlearn)</a>
</li>
</ul></td>
</tr></table>
Expand Down
7 changes: 7 additions & 0 deletions docs/pages/html/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,12 @@
<section id="bnlearn-s-documentation">
<h1>BNLearn’s Documentation<a class="headerlink" href="#bnlearn-s-documentation" title="Link to this heading"></a></h1>
<p><a class="reference external" href="https://erdogant.github.io/bnlearn/"><img alt="|Python" src="https://img.shields.io/pypi/pyversions/bnlearn.svg" /></a> <a class="reference external" href="https://pypi.org/project/bnlearn/"><img alt="|Python Version" src="https://img.shields.io/pypi/v/bnlearn.svg" /></a> <a class="reference external" href="https://erdogant.github.io/bnlearn/"><img alt="Sphinx documentation" src="https://img.shields.io/badge/Sphinx-Docs-blue.svg" /></a> <a class="reference external" href="https://github.com/erdogant/bnlearn"><img alt="lines of code" src="https://sloc.xyz/github/erdogant/bnlearn/?category=code" /></a> <a class="reference external" href="https://pepy.tech/project/bnlearn"><img alt="Downloads per month" src="https://static.pepy.tech/personalized-badge/bnlearn?period=month&amp;units=international_system&amp;left_color=grey&amp;right_color=brightgreen&amp;left_text=PyPI%20downloads/month" /></a> <a class="reference external" href="https://pepy.tech/project/bnlearn"><img alt="Downloads in total" src="https://static.pepy.tech/personalized-badge/bnlearn?period=total&amp;units=international_system&amp;left_color=grey&amp;right_color=brightgreen&amp;left_text=Downloads" /></a> <a class="reference external" href="https://github.com/erdogant/bnlearn/blob/master/LICENSE"><img alt="License" src="https://img.shields.io/badge/license-MIT-green.svg" /></a> <a class="reference external" href="https://github.com/erdogant/bnlearn/network"><img alt="Github Forks" src="https://img.shields.io/github/forks/erdogant/bnlearn.svg" /></a> <a class="reference external" href="https://github.com/erdogant/bnlearn/issues"><img alt="Open Issues" src="https://img.shields.io/github/issues/erdogant/bnlearn.svg" /></a> <a class="reference external" href="http://www.repostatus.org/#active"><img alt="Project Status" src="http://www.repostatus.org/badges/latest/active.svg" /></a> <a class="reference external" href="https://erdogant.github.io/bnlearn/pages/html/Documentation.html#medium-blog"><img alt="Medium Blog" src="https://img.shields.io/badge/Medium-Blog-green.svg" /></a> <a class="reference external" href="https://erdogant.github.io/bnlearn/pages/html/Documentation.html#colab-notebook"><img alt="Colab example" src="https://colab.research.google.com/assets/colab-badge.svg" /></a> <a class="reference external" href="https://zenodo.org/badge/latestdoi/231263493"><img alt="Cite" src="https://zenodo.org/badge/231263493.svg" /></a> <a class="reference external" href="https://erdogant.github.io/bnlearn/pages/html/Documentation.html#"><img alt="donate" src="https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors" /></a></p>
<table class="docutils align-center">
<tbody>
<tr class="row-odd"><td><p><img alt="logo" src="_images/logo.png" /></p></td>
</tr>
</tbody>
</table>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<ul class="simple">
Expand Down Expand Up @@ -398,6 +404,7 @@ <h1>Contents<a class="headerlink" href="#contents" title="Link to this heading">
<li class="toctree-l2"><a class="reference internal" href="bnlearn.bnlearn.html#bnlearn.bnlearn.adjmat2vec"><code class="docutils literal notranslate"><span class="pre">adjmat2vec()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="bnlearn.bnlearn.html#bnlearn.bnlearn.check_model"><code class="docutils literal notranslate"><span class="pre">check_model()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="bnlearn.bnlearn.html#bnlearn.bnlearn.compare_networks"><code class="docutils literal notranslate"><span class="pre">compare_networks()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="bnlearn.bnlearn.html#bnlearn.bnlearn.compute_logp"><code class="docutils literal notranslate"><span class="pre">compute_logp()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="bnlearn.bnlearn.html#bnlearn.bnlearn.dag2adjmat"><code class="docutils literal notranslate"><span class="pre">dag2adjmat()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="bnlearn.bnlearn.html#bnlearn.bnlearn.df2onehot"><code class="docutils literal notranslate"><span class="pre">df2onehot()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="bnlearn.bnlearn.html#bnlearn.bnlearn.get_edge_properties"><code class="docutils literal notranslate"><span class="pre">get_edge_properties()</span></code></a></li>
Expand Down
Binary file modified docs/pages/html/objects.inv
Binary file not shown.
2 changes: 1 addition & 1 deletion docs/pages/html/searchindex.js

Large diffs are not rendered by default.

10 changes: 10 additions & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,16 @@ BNLearn's Documentation

|python| |pypi| |docs| |LOC| |downloads_month| |downloads_total| |license| |forks| |open issues| |project status| |medium| |colab| |DOI| |donate|

.. |logo| image:: ../figs/logo.png

.. table::
:align: center

+----------+
| |logo| |
+----------+


.. tip::
* `Guide in detecting causal relationships using Bayesian Structure Learning in Python. <https://towardsdatascience.com/a-step-by-step-guide-in-detecting-causal-relationships-using-bayesian-structure-learning-in-python-c20c6b31cee5>`_
* `Guide in designing knowledge-driven models using Bayesian theorem. <https://towardsdatascience.com/a-step-by-step-guide-in-detecting-causal-relationships-using-bayesian-structure-learning-in-python-c20c6b31cee5>`_
Expand Down

0 comments on commit fd41441

Please sign in to comment.