Skip to content

equipe22/pymedext_core

Repository files navigation

PyMedExt - a library to process clinical text

PyMedExt is a library designed to process clinical text. PyMedExt includes basic data wrangling functions to transform text input formated as txt, pymedext,biocxml,biocjson,fhir, or brat into pymedext, biocxml, biocjson, omop or brat.

PyMedExt also includes an easy way to define Annotator.

Requirements

Installation

Using pip

pip3 install git+https://github.com/equipe22/pymedext_core.git

Tutorials

Clone the repository for demo

git clone https://github.com/equipe22/pymedext_core.git
cd pymedext_core/examples

#This script contains the Tutorial
#python3 demo.py
# go in python interactive mode
python3

Load a file as a PyMedExt Document

#import dependencies
from pymedextcore import pymedext # contains all pymedextcore  objects
import os
import logging

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)


dataPath=os.getcwd().replace("examples","data/frenchReport/")
resourcePath=os.getcwd().replace("examples","ressources/")
letter=open(dataPath+"letter.txt","r").read()
print(letter)

LetterPyMedExt=pymedext.Document(raw_text= letter, ID="ID_letter01")
LetterPyMedExt.to_dict()

Add an Annotator

if you want to expand PyMedExt and add a new Annotator. Firstly, create a class which extend the annotators.Annotator class. Secondly, you will need to extend two functions.

  • init
  • annotate_function

the findMatches use case

the simplest annotator possibles

Define a function based on re.inter

import re
thisValue="liposarcome"
#find the position of each thisValue in the letter text
for i in re.finditer(thisValue, letter.lower()): 				
          matchPos=i.start()
          if matchPos is not []:
            span=(int(matchPos), int(matchPos)+len(thisValue))
            print(span)

Now we will adapt this function to the Annotator class

init()

The init function must contains

  • key_input --> the type of Annotation's input used by the Annotator, here "raw_text"
  • key_output --> the type of the Annotation's output by the Annotator, here "regex_fast"
  • ID --> the tool ID, eventually the tool git repository address and version for Annotation Traceability
  • other arguments are specific to the type of the defined Annotator for example, findValues: "list of value to identify in the text"
from pymedextcore import annotators

class findMatches(annotators.Annotator):
    """
    Annotator based on linux grep to search regext from a source file
    """
    def __init__(self, key_input, key_output, ID, findValues ):
        """FIXME! initialize the annotator

        :param key_input: input ['raw_text']
        :param key_output: Annotation type here "Liposarcom.V0"
        :param ID: regex_fast.version
        :param findValues: "list of value to identify in the text"
        :returns:
        :rtype:

        """
        super().__init__(key_input, key_output, ID)
        self.findValues=findValues
        ```

##### annotate_function()

The annotate_function must contains
- _input --> Annotations associated with the Document to annotate
- returns --> Annotations ( a list of annotations object )

```python        
    def annotate_function(self, _input):
        """ main annotation function
        :param _input: in this case raw_text
        :returns: a list of annotations
        :rtype:
        """
        logger.debug(_input)
        inp = self.get_key_input(_input,0)[0]
        annotationsList=[]
        for thisValue in self.findValues:
            #result = [i.start() for i in re.finditer(thisValue, inp.value.lower())]
            for i in re.finditer(thisValue, inp.value.lower()):				
                matchPos=i.start()
                if matchPos is not []:
                    logger.debug("ok go in loop")
                    logger.debug(matchPos)
                    ID = str(uuid.uuid1())
                    annotationsList.append(annotators.Annotation(type= self.key_output,
                					                          value=thisValue, #thisMatch,
                					                          span=(int(matchPos), int(matchPos)+len(thisValue)),
                					                          source=self.ID,
                					                          isEntity=True,
                					                          ID=ID,
                					                          source_ID = inp.ID))
                logger.debug(annotationsList)                					                          
        return(annotationsList)

findMatches demo

demoAnnotator = findMatches(key_input = ['raw_text'],
                     key_output = 'Liposarcom.V0',
                     ID = "demoreiter", findValues = ["liposarcome"])

# add all your annotators in a list
annotatorsList =[demoAnnotator]
# annotate your document
LetterPyMedExt.annotate(annotatorsList)

the GREP use case

grep is a linux command-line which allow you to search into plain-text data sets for lines that match a regular expression. The script grepWrapperAnnotator.py located on the examples directory, is a wrapper around grep.

this wrapper takes as resources two files :

  • regexResource.txt --> a one column list of words to search in a text
  • pivotResource.csv --> a two columns list of words: pattern, normalizewords

Define the Grep Annotator

init()

The init function must contains

  • key_input --> the type of Annotation's input used by the Annotator, here "raw_text"
  • key_output --> the type of the Annotation's output by the Annotator, here "regex_fast"
  • ID --> the tool ID, eventually the tool git repository address and version
  • other arguments are specific to the type of the defined Annotator
from pymedextcore import annotators
class regexFast(annotators.Annotator):
    """
    Annotator based on linux grep to search regex from a source file
    """
    def __init__(self, key_input, key_output, ID, regexResource, pathToPivot, ignore_syntax=False):
        """FIXME! initialize the annotator
        :param key_input: input [raw_text']
        :param key_output: either regex_fast or the normalized regex value need to discuss
        :param ID: regex_fast.version
        :param regexResource: path to regex value file
        :param pathToPivot: pivot table between regex and the normalized value
        :param ignore_syntax: not used yet
        :returns:
        :rtype:

        """
        super().__init__(key_input, key_output, ID)
        self.ignore_syntax=ignore_syntax
        self.fileAnnotation=None
        self.countValue=None
        self.pathToPivot=pathToPivot
        self.pivot=dict()
        self.cmds=["fgrep -iow -n -b -F -f "+regexResource]
        self.loadPivot()
annotate_function()

The annotate_function must contains

  • _input --> Annotations associated with the Document to annotate
  • returns --> Annotations ( a list of annotations object )
def annotate_function(self, _input):
    """ main annotation function
    :param _input: in this case raw_text
    :returns: a list of annotations
    :rtype:
    """
    logger.debug(_input)
    #get_key_input: return the annotations oF Documents.annotations which have
    # the same type of the i th key_input element
    inp = self.get_key_input(_input,0)[0]
    fileAnnotation,countValue=self.makeMatch(inp)
    countValue=self.setPivot(countValue)
    logger.debug(countValue)
    annotations=[]
    for matchPos in list(fileAnnotation.keys()):
        for thisMatch in fileAnnotation[matchPos]:
            ID = str(uuid.uuid1())
            attributes={"ngram":thisMatch}
            annotations.append(annotators.Annotation(type= self.key_output,
                                          value=countValue[thisMatch]["normalized"], #thisMatch,
                                          span=(int(matchPos), int(matchPos)+len(thisMatch)),
                                          source=self.ID,
                                          isEntity=True,
                                          ID=ID,
                                          attributes=attributes,
                                          source_ID = inp.ID))
    return(annotations)
regexFast demo

First, clone the pymedext_core git repository and go to the examples directory

#import dependencies
from grepWrapperAnnotator import regexFast # contains your local annotator
from pymedextcore import pymedext # contains all pymedextcore  objects
import os
import logging

logging.basicConfig(level=logging.DEBUG)
resourcePath=os.getcwd().replace("examples","ressources/")
thisDoc=pymedext.Document(raw_text= " a document demo you want to work with and contains evidence of. covid 19, sras, sars ", ID="ID01")


getRegex = regexFast(key_input = ['raw_text'],
                     key_output = 'regex_fast',
                     ID = "regex_fast.v1",
                     regexResource=resourcePath+"regexResource.txt ",
                     pathToPivot=resourcePath+"pivotResource.csv"
                     )
# add all your annotators in a list
annotators =[getRegex]
# annotate your document
thisDoc.annotate(annotators)
thisDoc.to_dict()
#write your annotation in PymedExt json
thisDoc.writeJson("outputfile.json")
LetterPyMedExt.annotate(annotators)
LetterPyMedExt.to_dict()
#write your annotation in PymedExt json

Export PyMedExt Document as a Brat file

path="outputfolder"
try:
    os.mkdir(path)
except OSError:
    print ("Creation of the directory %s failed" % path)
else:
    print ("Successfully created the directory %s " % path)

pymedext.brat.savetobrat(LetterPyMedExt,path)

this will output three files located on outputfolder:

  • xxx.txt --> the raw TextÒÒ
  • xxx.ann --> the annotations
  • annotation.conf
cat xxx.ann

T0	Liposarcom.V0 246 258	liposarcome
T1	Liposarcom.V0 518 530	liposarcome
T2	regex_fast 445 450	sars-cov-2

PyMedExt commandline (in progress)

pymedext -h
usage: pymedext [-h] [-i INPUTFILE] [-o OUTPUT]
                [--itype {txt,pymedext,biocxml,biocjson,fhir,brat}]
                [--otype {omop,pymedext,bioc,brat}] [-f] [-be BRATEXCLUDE]
                [-v]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUTFILE, --inputFile INPUTFILE
                        path to input folder
  -o OUTPUT, --output OUTPUT
                        enter the output file name
  --itype {txt,pymedext,biocxml,biocjson,fhir,brat}
                        input type
  --otype {omop,pymedext,bioc,brat}
                        output type
  -f, --folder          if set, the input is consider to be a folder of json
                        pymedext
  -be BRATEXCLUDE, --bratexclude BRATEXCLUDE
                        list of annotations to exclude from brat
  -v, --version         show program's version number and exit

text to pymedext

    pymedext -i demo.txt --itype txt -otype pymedext

fhir to pymedext

    pymedext -i patient-2169591.fhir-bundle.xml  --itype fhir -otype pymedext
    pymedext -i patient-99912345.fhir-bundle.xml  --itype fhir -otype pymedext

bioc to pymedext

text to pymedext

    pymedext -i demo.txt --itype txt -otype pymedext

fhir to pymedext

    pymedext -i patient-2169591.fhir-bundle.xml  --itype fhir -otype pymedext
    pymedext -i patient-99912345.fhir-bundle.xml  --itype fhir -otype pymedext

bioc to pymedext

    cd data
    wget https://quaerofrenchmed.limsi.fr/QUAERO_FrenchMed_BioC.zip
    unzip QUAERO_FrenchMed_BioC.zip
    pymedext -i 7382743.xml --itype biocxml -otype pymedext
    pymedext -i biocformat.json --itype biocjson -otype pymedext
    pymedext -i QUAERO_BioC/corpus/train/MEDLINE_train_bioc --itype biocjson -otype pymedext
    pymedext -i QUAERO_BioC/corpus/train/EMEA_train_bioc --itype biocjson -otype pymedext
    #pymedext to bioc, need to be able to construct collection

brat to pymedext (no example)

 no example
 brat to bioc

require annotation

It will be done on pymedext_public

  • pymedext to omop
  • fhir to omop
  • fhir to bioc
  • brat to omop
  • pymedext to doccano

Other Install mode

Using GNU Make

#local install of pymedext packages
make install

Deploying PyMedExt as Docker image

Install as Docker Image

check on 21 January 2021

Linux

https://docs.docker.com/engine/install/#server

Mac Intel Processor

https://docs.docker.com/docker-for-mac/install/#system-requirements

Mac M1 Processor

https://docs.docker.com/docker-for-mac/install/#system-requirements trouble to make it work

Build Image

fullfill configuration

first create a file config/.git-credentials based on the config/.git-credentials_template http:user:[email protected]

Docker in command line
docker build -t pymedext-core:v0.0.2 .
Using GNU Make
#build docker instance
make build