Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Nearest correlation #260

Closed
wants to merge 12 commits into from
2 changes: 2 additions & 0 deletions src/fmu/tools/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@
from fmu.tools.sensitivities import calc_tornadoinput # noqa
from fmu.tools.sensitivities import excel2dict_design # noqa
from fmu.tools.sensitivities import summarize_design # noqa
from fmu.tools.sensitivities import nearcorr # noqa

__all__.extend(
[
Expand All @@ -50,6 +51,7 @@
"calc_tornadoinput",
"excel2dict_design",
"summarize_design",
"nearcorr",
]
)

Expand Down
2 changes: 2 additions & 0 deletions src/fmu/tools/sensitivities/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,13 @@
from fmu.tools.sensitivities._excel2dict import excel2dict_design, inputdict_to_yaml
from fmu.tools.sensitivities._tornado_onebyone import calc_tornadoinput
from fmu.tools.sensitivities.create_design import DesignMatrix
from fmu.tools.sensitivities.nearest_correlation import nearcorr

__all__ = [
"summarize_design",
"calc_tornadoinput",
"DesignMatrix",
"excel2dict_design",
"inputdict_to_yaml",
"nearcorr",
]
33 changes: 3 additions & 30 deletions src/fmu/tools/sensitivities/design_distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@
import pandas as pd
import scipy.stats

from fmu.tools.sensitivities.nearest_correlation import nearcorr


def _check_dist_params_normal(dist_params):
if len(dist_params) not in [2, 4]:
Expand Down Expand Up @@ -563,7 +565,7 @@ def make_covariance_matrix(df_correlations, stddevs=None):
# Project to nearest symmetric positive definite matrix
if not _is_positive_definite(corr_matrix):
input_corr_matrix = corr_matrix.copy()
corr_matrix = _nearest_positive_definite(corr_matrix)
corr_matrix = nearcorr(corr_matrix)
print("Input correlation matrix: ")
with np.printoptions(precision=3, suppress=True):
print(input_corr_matrix)
Expand All @@ -585,35 +587,6 @@ def make_covariance_matrix(df_correlations, stddevs=None):
return np.dot(cov_matrix, diag)


def _nearest_positive_definite(a_mat):
"""Implementation taken from:
https://stackoverflow.com/questions/43238173/
python-convert-matrix-to-positive-semi-definite/43244194#43244194
"""

b_mat = (a_mat + a_mat.T) / 2
_, s_mat, v_mat = la.svd(b_mat)

h_mat = np.dot(v_mat.T, np.dot(np.diag(s_mat), v_mat))

a2_mat = (b_mat + h_mat) / 2

a3_mat = (a2_mat + a2_mat.T) / 2

if _is_positive_definite(a3_mat):
return a3_mat

spacing = np.spacing(la.norm(a_mat))
identity = np.eye(a_mat.shape[0])
kiter = 1
while not _is_positive_definite(a3_mat):
mineig = np.min(np.real(la.eigvals(a3_mat)))
a3_mat += identity * (-mineig * kiter**2 + spacing)
kiter += 1

return a3_mat


def _is_positive_definite(b_mat):
"""Returns true when input is positive-definite, via Cholesky"""
try:
Expand Down
79 changes: 79 additions & 0 deletions src/fmu/tools/sensitivities/nearest_correlation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
import numpy as np
from numpy import copy, inf
from numpy.linalg import norm


def nearcorr(
A,
tol=None,
max_iterations=100,
weights=None,
):
"""
Finds the nearest correlation matrix to the symmetric matrix A.
Based on https://github.com/mikecroucher/nearest_correlation

Parameters
----------
A: symmetric numpy array
tol: convergence tolerance
max_iterations: maximum number of iterations (default 100)
weights: optional vector defining a diagonal weight matrix diag(W)

References
----------

https://nhigham.com/2013/02/13/the-nearest-correlation-matrix/
https://eprints.maths.manchester.ac.uk/232/1/paper3.pdf

"""
if not np.array_equal(A, A.T):
raise ValueError("A must be symmetric")

if not tol:
eps = np.spacing(1)
tol = eps * np.shape(A)[0] * np.array([1, 1])

if weights is None:
weights = np.ones(np.shape(A)[0])

X = copy(A)
Y = copy(A)
ds = np.zeros(np.shape(A))
rel_diffY = inf
rel_diffX = inf
rel_diffXY = inf

Whalf = np.sqrt(np.outer(weights, weights))

iteration = 0
while max(rel_diffX, rel_diffY, rel_diffXY) > tol[0]:
iteration += 1
if iteration > max_iterations:
raise ValueError(f"No convergence after {max_iterations} iterations")

Xold = copy(X)
R = X - ds
R_wtd = Whalf * R
X = proj_spd(R_wtd)

X = X / Whalf
ds = X - R
Yold = copy(Y)
Y = copy(X)
np.fill_diagonal(Y, 1)
normY = norm(Y, "fro")
rel_diffX = norm(X - Xold, "fro") / norm(X, "fro")
rel_diffY = norm(Y - Yold, "fro") / normY
rel_diffXY = norm(Y - X, "fro") / normY

X = copy(Y)

return X


def proj_spd(A):
# NOTE: the input matrix is assumed to be symmetric
d, v = np.linalg.eigh(A)
A = (v * np.maximum(d, 0)).dot(v.T)
return (A + A.T) / 2
80 changes: 80 additions & 0 deletions tests/sensitivities/test_nearest_correlation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
import numpy as np
import pytest

from fmu.tools import nearcorr

# References
# [1] 'Computing the nearest correlation matrix -
# a problem from finance': Higham, IMA Journal of Numerical Analysis (2002) 22, 329.343


def test_nag_example():
"""Test from NAG Mark 24 documentation for g02aa, originally from [1]"""
A = np.array([[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 2, -1], [0, 0, -1, 2]])

X = nearcorr(A)

expected_result = np.array(
[
[1.0, -0.8084125, 0.1915875, 0.10677505],
[-0.8084125, 1.0, -0.65623269, 0.1915875],
[0.1915875, -0.65623269, 1.0, -0.8084125],
[0.10677505, 0.1915875, -0.8084125, 1.0],
]
)

assert (np.abs((X - expected_result)) < 1e-8).all()


def test_higham_example_2002():
"""Example taken from [1]"""
A = np.array([[1, 1, 0], [1, 1, 1], [0, 1, 1]])

X = nearcorr(A)

expected_result = np.array(
[
[1.0, 0.76068985, 0.15729811],
[0.76068985, 1.0, 0.76068985],
[0.15729811, 0.76068985, 1.0],
]
)

assert (np.abs((X - expected_result)) < 1e-8).all()


def test_assert_symmetric():
"""Test that non-symmetric matrix raises ValueError"""
A = np.array([[1, 1, 0], [1, 1, 1], [1, 1, 1]])

with pytest.raises(ValueError):
nearcorr(A)


def test_exceeded_max_iterations():
"""Test that exceeding max iterations raises ValueError"""
A = np.array([[1, 1, 0], [1, 1, 1], [0, 1, 1]])
with pytest.raises(ValueError, match="No convergence after 10 iterations"):
nearcorr(A, max_iterations=10)


def test_weights_documented_example():
"""Test weights using the exact example from examples:
https://github.com/mikecroucher/nearest_correlation"""
A = np.array([[1, 1, 0], [1, 1, 1], [0, 1, 1]])
weights = np.array([1, 2, 3])
X = nearcorr(A, weights=weights)

expected_result = np.array(
[
[1.0, 0.66774961, 0.16723692],
[0.66774961, 1.0, 0.84557496],
[0.16723692, 0.84557496, 1.0],
]
)

assert np.allclose(X, expected_result, atol=1e-8), (
f"Result doesn't match documented example.\n"
f"Expected:\n{expected_result}\n"
f"Got:\n{X}"
)
Loading