-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.nf
882 lines (793 loc) · 33.5 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
#!/usr/bin/env nextflow
nextflow.enable.dsl = 2
include { snp; report_snp } from './wf-human-variation/workflows/wf-human-snp'
include { lookup_clair3_model } from './wf-human-variation/modules/local/wf-human-snp'
include { bam as sv } from './wf-human-variation/workflows/wf-human-sv'
include { output_sv } from './wf-human-variation/modules/local/wf-human-sv'
include {
index_ref_gzi;
index_ref_fai;
cram_cache;
decompress_ref;
mosdepth as mosdepth_input;
mosdepth as mosdepth_downsampled;
readStats;
getAllChromosomesBed;
publish_artifact;
get_region_coverage;
failedQCReport;
makeAlignmentReport;
getParams;
getVersions;
getGenome;
eval_downsampling;
downsampling;
annotate_vcf as annotate_snp_vcf;
concat_vcfs as concat_snp_vcfs;
concat_vcfs as concat_refined_snp;
sift_clinvar_vcf as sift_clinvar_snp_vcf;
bed_filter;
sanitise_bed;
combine_metrics_json;
haplocheck;
} from './wf-human-variation/modules/local/common'
include {
ingress;
cram_to_bam;
} from './wf-human-variation/lib/_ingress.nf'
include {
refine_with_sv;
vcfStats;
output_snp;
} from "./wf-human-variation/modules/local/wf-human-snp.nf"
include {
mod;
validate_modbam;
sample_probs;
} from './wf-human-variation/workflows/methyl'
process download_reference {
// download GRCh38_no_alt_analysis_set
cpus 1
storeDir {params.store_dir ? "${params.store_dir}" : null }
input:
val database_url
output:
path "GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz"
script:
String db_basename = file(database_url).Name
"""
wget '${database_url}'
"""
}
// entrypoint workflow
WorkflowMain.initialise(workflow, params, log)
workflow {
Map colors = NfcoreTemplate.logColours(params.monochrome_logs)
can_start = true
// Check for deprecated options
if (params.containsKey('methyl')) {
log.error (colors.red + "The workflow now uses modkit instead of the deprecated modbam2bed. Please use --mod instead of --methyl to enable modkit." + colors.reset)
can_start = false
}
if (params.containsKey('phase_methyl') || params.containsKey('phase_mod') || params.containsKey('phase_vcf')) {
log.error (colors.red + "phase_methyl, phase_mod and phase_vcf are deprecated. Please use --phased instead to enable phasing of modkit results." + colors.reset)
can_start = false
}
if (!params.snp && !params.sv && !params.mod ) {
log.error (colors.red + "No work to be done! Choose one or more workflows to run from [--snp, --sv, --mod]" + colors.reset)
can_start = false
}
if (params.str) {
throw new Exception(colors.red + "--str is are not supported." + colors.reset)
can_start = false
}
// Check if it is in genotyping mode
if (params.snp && params.vcf_fn) {
if (params.bed){
throw new Exception(colors.red + "Clair3 cannot run with both --vcf_fn and --bed." + colors.reset)
}
log.warn ("Running Clair3 in genotyping mode with --vcf_fn will override --snp_min_af and --indel_min_af to 0.0.")
}
// check SV calling will be done when benchmarking SV calls
if(params.sv_benchmark && !params.sv) {
throw new Exception(colors.red + "Cannot benchmark SV subworkflow without running SV subworkflow! Enable the SV subworkflow with --sv." + colors.reset)
}
// If downsampling is required, check that the requested coverage is above the min threshold
if(params.downsample_coverage) {
if (params.downsample_coverage_target < params.bam_min_coverage){
log.error (colors.red + "Downsampling target ${params.downsample_coverage_target} is lower than the minimum BAM coverage requested of ${params.bam_min_coverage}" + colors.reset)
can_start = false
}
}
// If gene summaries are requested, check a BED is provided and warn if input BED doesn't have 4 columns
// Set gene_summary_bed accordingly so we can avoid running mosdepth on incompatible BED files
def gene_summary_bed = false
if (!params.bed) {
log.warn ("A BED file has not been provided, and therefore a gene summary will not be generated.")
}
else {
col_size = file(params.bed).splitCsv(sep: '\t').first().size
if (col_size < 4){
log.warn ("The input BED file has fewer than 4 columns, and therefore a gene summary will not be generated.")
}
else {
gene_summary_bed = true
}
}
// Programmatically define chromosome codes.
// note that we avoid interpolation (eg. "${chr}N") to ensure that values
// are Strings and not GStringImpl, ensuring that .contains works.
ArrayList chromosome_codes = []
ArrayList chromosomes = [1..22] + ["X", "Y", "M", "MT"]
for (N in chromosomes.flatten()){
chromosome_codes += ["chr" + N, "" + N]
}
// Trigger haplotagging
def run_haplotagging = params.phased
// Trigger the SNP workflow based on a range of different conditions:
def run_snp = params.snp || run_haplotagging || (params.cnv && !params.use_qdnaseq)
// Trigger gene summary if: gene summary requested, BED provided, and BED compatible
def create_gene_summary = params.output_gene_summary && params.bed && gene_summary_bed
// Otherwise handle (u)BAM/CRAM
if (!params.bam) {
throw new Exception(colors.red + "Missing required --bam input argument." + colors.reset)
}
// ************************************************************************
// Bail from the workflow for a reason we should have already specified
if (!can_start){
throw new Exception("The workflow could not be started.")
}
// ************************************************************************
// Dummy optional file
// TODO should be a channel?
OPTIONAL = file("$projectDir/data/OPTIONAL_FILE")
// Get the reference
ref = download_reference(
"https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz",
) | decompress_ref
// Create ref index
index_ref = index_ref_fai(ref)
ref_index = index_ref.reference_index
Pinguscript.ping_start(nextflow, workflow, params)
// Define extension based on presence/absence of downsampling.
// This is only relevant when reads are remapped.
def ingress_ext = ['cram', 'crai']
// Determine if (re)alignment is required for input BAM
bam_channel = ingress(
ref,
ref_index,
params.bam,
ingress_ext,
)
// Check if the genome build in the BAM is suitable for any workflows that have restrictions
// NOTE getGenome will exit non-zero if the build is neither hg19 or hg38, so it shouldn't be called
// if annotation is skipped for snp, sv and phased, to allow other genomes (including non-human)
// to be processed
// set the genome build
genome_build = "hg38"
// Build ref cache for CRAM steps that do not take a reference
cram_cache(ref)
ref_cache = cram_cache.out.ref_cache
ref_path = cram_cache.out.ref_path
// canonical ref and BAM channels to pass around to all processes
ref_channel = ref.concat(ref_index).concat(ref_cache).concat(ref_path).buffer(size: 4)
// haplocheck is not needed, use the predefined NV file.
hap_check = Channel.fromPath("$projectDir/data/OPTIONAL_FILE")
// Set BED (and create the default all chrom BED if necessary)
// Make a second bed channel that won't be filtered based on coverage,
// to be used as a final ROI filter
bed = null
using_user_bed = false
if(params.bed){
using_user_bed = true
// Sanitise the input BED file
input_bed = Channel.fromPath(params.bed, checkIfExists: true)
bed = sanitise_bed(input_bed, ref_channel)
roi_filter_bed = bed
}
else {
bed = getAllChromosomesBed(ref_channel).all_chromosomes_bed
}
// mosdepth for depth traces -- passed into wf-snp :/
mosdepth_input(bam_channel, bed, ref_channel, params.depth_window_size, create_gene_summary)
mosdepth_stats = mosdepth_input.out.mosdepth_tuple
mosdepth_summary = mosdepth_input.out.summary
if (params.depth_intervals){
mosdepth_perbase = mosdepth_input.out.perbase
} else {
mosdepth_perbase = Channel.empty()
}
if (create_gene_summary){
coverage_summary = mosdepth_input.out.gene_summary
}
else {
coverage_summary = Channel.empty()
}
// Determine if the coverage threshold is met to perform analysis.
// If too low, it creates an empty input channel,
// avoiding the subsequent processes to do anything
software_versions = getVersions()
workflow_params = getParams()
if (params.bam_min_coverage > 0){
if (params.bed){
// Filter out the data based on the individual region's coverage
coverage_check = get_region_coverage(bed, mosdepth_stats)
bed = coverage_check.filt_bed
mosdepth_stats = coverage_check.mosdepth_tuple
}
}
bam_channel.set{pass_bam_channel}
discarded_bams = Channel.empty()
// Set extensions for downstream analyses based on the input type
// This will affect only the haplotagging.
extensions = pass_bam_channel.map{
xam, xai, meta ->
meta.is_cram ? ['cram', 'crai'] : ['bam', 'bai']
}
// Check and perform downsampling if needed.
if (params.downsample_coverage){
// Define reduction rate
eval_downsampling(
mosdepth_input.out.summary,
params.bed ? mosdepth_stats.map{it[0]} : OPTIONAL
)
eval_downsampling.out.downsampling_ratio
.splitCsv()
.branch{
subset: it[0] == 'true'
ready: it[0] == 'false'
}
.set{ratio}
// Define extension based on whether we are asking for CNV. If so,
// use BAM, otherwise CRAM.
downsampling_ext = pass_bam_channel.map{
xam, xai, meta ->
convert_cram_to_bam ? ['bam', 'bai'] : ['cram', 'crai']
}
downsampling(pass_bam_channel, ref_channel, ratio.subset, downsampling_ext)
// prepare ready files
ratio.ready
.combine(pass_bam_channel)
.map{ready, ratio, xam, xai, meta -> [xam, xai, meta]}
.branch{
xam, xai, meta ->
cram: xam.name.endsWith('.cram')
bam: xam.name.endsWith('.bam')
}
.set{branched_bam_channel}
// Convert aligned CRAMs that could not be downsampled to BAM if needed and mix with other ingested BAMs
// Avoid issues with BAM being passed to `cram_to_bam`.
ready_bam_channel = cram_to_bam(
branched_bam_channel.cram,
ref_channel.map { ref, index, cache, path -> [ref, index] }
)
| map { xam, xai, meta -> [xam, xai, meta + [output: false, is_cram: false]] }
| mix(branched_bam_channel.bam)
// Join allowing a remainder, so that only one for each is retained.
// we drop all null, and due to the structure the joined channel can only be:
// - [meta, null, xam, xai], or
// - [meta, xam, xai, null]
// Using it - null removes the inputs from the wrong channel, retaining
// Before merging properly, we first check that the merged channel size is not malformed
downsampling.out.xam
.join(ready_bam_channel, by:2, remainder: true)
.filter{it.size() > 4}
.subscribe{
throw new Exception(colors.red + "Unexpected channel size when merging." + colors.reset)
}
// If this passes, then we can create the proper channel.
downsampling.out.xam
.join(ready_bam_channel, by:2, remainder: true)
.map{it - null}
.map{meta, xam, xai -> [xam, xai, meta]}
.set{pass_bam_channel}
// Prepare the output files for mosdepth.
// First, we compute the depth for the downsampled files, if it
// exists
mosdepth_downsampled(downsampling.out, bed, ref_channel, params.depth_window_size, false)
// Then, choose which output will be used in the report.
// If it needs to be subset, then the combined output exists, whereas
// the original mosdepth file is merged with the empty ready channel, leaving
// the correct file to output. Otherwise, the reverse happens and it emits
// the original mosdepth files.
mosdepth_summary =
mosdepth_downsampled.out.summary
.combine(ratio.subset)
.map{it[0]}
.join(
mosdepth_input.out.summary
.combine(ratio.ready)
.map{it[0]}
, remainder: true
)
mosdepth_stats =
mosdepth_downsampled.out.mosdepth_tuple
.combine(ratio.subset)
.map{[it[0], it[1], it[2]]}
.join(
mosdepth_input.out.mosdepth_tuple
.combine(ratio.ready)
.map{[it[0], it[1], it[2]]}
, remainder: true
)
.map{it - null}
if (params.depth_intervals){
mosdepth_perbase =
mosdepth_downsampled.out.perbase
.combine(ratio.subset)
.map{it[0]}
.join(
mosdepth_input.out.perbase
.combine(ratio.ready)
.map{it[0]}
, remainder: true
)
.map{it - null}
} else {
mosdepth_perbase = Channel.empty()
}
}
// Run readStats depending on the downsampling, if requested.
// Also check if using_user_bed is true, in which case pass the sanitised
// BED to readStats, rather than the filtered BED
if (params.downsample_coverage) {
readStats(
pass_bam_channel,
using_user_bed ? roi_filter_bed : bed,
ref_channel
)
} else {
readStats(
bam_channel,
using_user_bed ? roi_filter_bed : bed,
ref_channel
)
}
bam_stats = readStats.out.read_stats
bam_flag = readStats.out.flagstat
bam_hists = readStats.out.histograms
// populate output json with ingressed runids and models
bam_runids = readStats.out.runids
bam_basecallers = readStats.out.basecallers
ArrayList ingressed_run_ids = []
bam_runids.splitText().subscribe(
onNext: {
ingressed_run_ids += it.strip()
},
onComplete: {
params.wf["ingress.run_ids"] = ingressed_run_ids
}
)
// Define depth_pass channel
if (params.bam_min_coverage > 0){
if (params.bed){
// Count the number of lines in the file to ensure that
// there are intervals with enough coverage for downstream
// analyses.
n_lines = mosdepth_stats
| map{ it[0] }
| countLines()
// Ensure that the data have enough region coverage
// and intervals in the output coverage BED file.
// First, load and split the summary file, keeping only
// the `total_region` value (`total_region` and `total`
// are identical in absence of a BED file).
depth_pass = mosdepth_summary
| splitCsv(sep: "\t", header: true)
| filter{it -> it.chrom == "total_region"}
// Extract the mean coverage as floating value
| map{
it ->
float mean = it.mean as float
[mean]}
// Add line number in the coverage BED file
| combine(n_lines)
// Check if the coverage is appropriate
| map {
mean, n_lines_v ->
int n_lines = n_lines_v as int
boolean pass = mean > params.bam_min_coverage && n_lines > 0
[pass, mean]
}
// Without a BED, use summary values for the region
} else {
depth_pass = mosdepth_summary
| splitCsv(sep: "\t", header: true)
| filter{it -> it.chrom == "total_region"}
| map{
it ->
float mean = it.mean as float
boolean pass = mean > params.bam_min_coverage
[pass, mean]}
}
} else {
// Otherwise, set all BAM to pass.
depth_pass = bam_channel
| map{ it -> [true, null] }
}
// Implement the BAM stats barrier after the pre-processing.
// This will use the reads after the downsampling when requested.
// Currently, it works using only the BAM coverage, but in the
// future will allow to easily implement additional thresholds.
filter = depth_pass
.combine(pass_bam_channel)
.branch{
dp_pass, dp_val_env, bam, bai, meta ->
pass: dp_pass
not_pass: true
}
// Create the pass_bam_channel channel when they pass
filter.pass
.map{it ->
it.size > 0 ? [it[-3], it[-2], it[-1]] : it
}
.set{pass_bam_channel}
// If it doesn't pass the minimum depth required,
// emit a bam channel of discarded bam files.
filter.not_pass
.subscribe {
dp_pass, dp, bam, bai, meta ->
// check where it failed
def fail_depth = dp < params.bam_min_coverage ? "Depth: ${dp} < ${params.bam_min_coverage}" : "Depth: ${dp} > ${params.bam_min_coverage}"
// Log where it failed
log.error "ERROR: File ${bam.getName()} will not be processed by the workflow due:\n - ${fail_depth}\n"
}
filter.not_pass
.map{it ->
it.size > 0 ? [it[-3], it[-2], it[-1]] : it
}
.set{discarded_bams}
// set sex to null (not required for this workflow)
sex = Channel.of(null)
// Add also to metadata for future use, when meta is properly handled.
pass_bam_channel = pass_bam_channel
| combine(sex)
| map{
xam, xai, meta, sex_v ->
[xam, xai, meta + [sex: sex_v]]
}
// Create reports for pass and fail channels
if (params.output_report){
// Create passing bam report
report_pass = pass_bam_channel
.combine(bam_stats)
.combine(bam_flag)
.combine(bam_hists)
.combine(mosdepth_stats.map{it[1]})
.combine(mosdepth_summary)
.combine(ref_channel)
.combine(software_versions.collect())
.combine(workflow_params)
.combine(Channel.value(using_user_bed))
.flatten()
.collect() | makeAlignmentReport
// Create failing bam report
report_fail = discarded_bams
.combine(bam_stats)
.combine(bam_flag)
.combine(bam_hists)
.combine(mosdepth_stats.map{it[1]})
.combine(mosdepth_summary)
.combine(ref_channel)
.combine(software_versions.collect())
.combine(workflow_params)
.combine(Channel.value(using_user_bed))
.flatten()
.collect() | failedQCReport
} else {
report_pass = Channel.empty()
report_fail = Channel.empty()
}
// Set up BED for wf-human-snp, wf-human-str or run_haplotagging
// CW-2383: we first call the SNPs to generate an haplotagged bam file for downstream analyses
if (run_snp) {
if(using_user_bed) {
snp_bed = bed
}
else {
// wf-human-snp uses OPTIONAL_FILE for empty bed for legacy reasons
snp_bed = Channel.fromPath("${projectDir}/data/OPTIONAL_FILE", checkIfExists: true)
}
if(params.clair3_model_path) {
log.warn "Overriding Clair3 model with ${params.clair3_model_path}."
clair3_model = Channel.fromPath(params.clair3_model_path, type: "dir", checkIfExists: true)
}
else {
// Add back basecaller models, if available.
// Combine each BAM channel with the appropriate basecaller file
// Fetch the unique basecaller models and, if these are more than the
// ones in the metadata, add them in there.
// We do it in the snv scope as it is the only workflow relying on the
// model, and given it has to wait for the readStats process, we try
// minimizing the waits
pass_bam_channel = pass_bam_channel
| combine(bam_basecallers)
| map{
xam, xai, meta, bc ->
def models = bc.splitText().collect { it.strip() }
[xam, xai, meta + [basecall_models: models]]
}
// map basecalling model to clair3 model
lookup_table = Channel.fromPath("${projectDir}/data/clair3_models.tsv", checkIfExists: true)
// attempt to pull out basecaller_cfg from metadata
def observed_pass_bam = 0
metamap_basecaller_cfg = pass_bam_channel
| map { xam, bai, meta ->
observed_pass_bam++ // keep count of observed BAMs to guard against emitting basecaller_cfg logging later on failed BAM
meta["basecall_models"]
}
| flatten // squash lists
// check returned basecaller list cardinality
metamap_basecaller_cfg
| count
| map { int n_models ->
// n_models of 0 may indicate an empty pass_bam_channel, so
// we keep a count of observed_pass_bam to determine whether
// we should handle basecaller_cfg errors
if (n_models == 0 && observed_pass_bam > 0){
if (params.override_basecaller_cfg) {
log.warn "Found zero basecall_model in the input alignment header, falling back to the model provided with --override_basecaller_cfg: ${params.override_basecaller_cfg}"
}
else {
String input_data_err_msg = '''\
################################################################################
# INPUT DATA PROBLEM
Your input alignment does not indicate the basecall model in the header and you
did not provide an alternative with --override_basecaller_cfg.
wf-human-variation requires the basecall model in order to automatically select
an appropriate SNP calling model.
## Next steps
You must re-run the workflow specifying the basecaller model with the
--override_basecaller_cfg option.
################################################################################
'''.stripIndent()
error input_data_err_msg
}
}
else if (n_models > 1){
String input_data_err_msg = '''\
################################################################################
# INPUT DATA PROBLEM
Your input data contains reads basecalled with more than one basecaller model.
Our workflows automatically select appropriate configuration and models for
downstream tools for a given basecaller model. This cannot be done reliably when
reads with different basecaller models are mixed in the same data set.
## Next steps
To use this workflow you must separate your input files, making sure all reads
are have been basecalled with the same basecaller model.
################################################################################
'''.stripIndent()
error input_data_err_msg
}
}
// use params.override_basecaller_cfg as basecaller_cfg if provided, regardless of what was detected
// we'll have exploded by now if we have no idea what the config is
if (params.override_basecaller_cfg) {
metamap_basecaller_cfg.map {
log.info "Detected basecaller_model: ${it}"
log.warn "Overriding basecaller_model: ${params.override_basecaller_cfg}"
}
basecaller_cfg = Channel.of(params.override_basecaller_cfg)
}
else {
basecaller_cfg = metamap_basecaller_cfg
| map { log.info "Detected basecaller_model: ${it}"; it }
| ifEmpty(params.override_basecaller_cfg)
| map { log.info "Using basecaller_model: ${it}"; it }
| first // unpack from list
}
clair3_model = lookup_clair3_model(lookup_table, basecaller_cfg).map {
log.info "Autoselected Clair3 model: ${it[0]}" // use model name for log message
it[1] // then just return the path to match the interface above
}
}
clair_vcf = snp(
pass_bam_channel,
snp_bed,
ref_channel,
clair3_model,
genome_build,
extensions,
run_haplotagging,
using_user_bed,
chromosome_codes
)
}
// wf-human-sv
// CW-2383: we then call SVs using either the pass bam or haplotagged bam, depending on the settings
if(params.sv) {
// If haplotagged bam is available and phase_snv is required, then phase.
// Otherwise, use pass_bam_file (passing a haplotagged bam and not requiring phase_snv would
// cause the workflow to wait for the tagged reads, but not enable phasing of sv since --phase
// won't be set; hence skip it if not required).
if (run_haplotagging){
sv_bam = clair_vcf.haplotagged_xam
} else {
sv_bam = pass_bam_channel
}
results_sv = sv(
sv_bam,
ref_channel,
bed,
mosdepth_input.out.summary,
OPTIONAL,
genome_build,
chromosome_codes
)
artifacts = results_sv.report.flatten()
sniffles_vcf = results_sv.sniffles_vcf
json_sv = results_sv.sv_stats_json
output_sv(artifacts)
} else {
json_sv = Channel.empty()
sniffles_vcf = Channel.fromPath("${projectDir}/data/OPTIONAL_FILE", checkIfExists: true)
}
// Then, we finish working on the SNPs by refining with SVs and annotating them. This is needed to
// maximise the interaction between Clair3 and Sniffles.
if (run_snp){
// Channel of results.
// We drop the raw .vcf(.tbi) file from Clair3 in it to then add back the files in the
// final_vcf channel, allowing for the latest file to be emitted.
// Channel structure is
/* [
* [CRAM, CRAI]
* [vcf, tbi]
* [gvcf, tbi] (optional)
* haploblocks (optional)
] */
// If first element ends with .vcf.gz, then discard it
clair_vcf.clair3_results
.filter{
!it[0].name.endsWith('.vcf.gz')
}
.collect()
.set{clair3_results}
// Define which bam to use for final refinement
if (run_haplotagging){
snp_refinement_xam = clair_vcf.haplotagged_xam
} else {
snp_refinement_xam = pass_bam_channel
}
// Refine the SNP phase using SVs from Sniffles
if (params.refine_snp_with_sv && params.sv){
// Run by chromosome to reduce memory usage
// Use collect on the reference, the SNP VCF
// and the SV VCFs to ensure running on each contig.
refined_snps = refine_with_sv(
ref_channel.collect(),
clair_vcf.vcf_files.combine(clair_vcf.contigs),
snp_refinement_xam | first,
sniffles_vcf.map{meta, vcf -> vcf}.collect()
)
final_snp_vcf = concat_refined_snp(
refined_snps.map{ meta, vcf, tbi -> [meta, vcf]}.groupTuple(),
"wf_snp"
)
} else {
// If refine_with_sv not requested, passthrough
final_snp_vcf = clair_vcf.vcf_files
}
// Filter by BED, if provided
if (params.bed) {
final_snp_vcf_filtered = bed_filter(final_snp_vcf, roi_filter_bed, "snp", "vcf").filtered
}
else {
final_snp_vcf_filtered = final_snp_vcf
}
// Run annotation, when requested.
if (!params.annotation) {
final_vcf = final_snp_vcf_filtered
// no ClinVar VCF, pass empty VCF to makeReport
clinvar_vcf = Channel.fromPath("${projectDir}/data/empty_clinvar.vcf")
}
else {
// do annotation and get a list of ClinVar variants for the report
// snpeff is slow so we'll just pass the whole VCF but annotate per contig
annotations = annotate_snp_vcf(
final_snp_vcf_filtered.combine(clair_vcf.contigs), genome_build, "snp"
)
final_vcf = concat_snp_vcfs(annotations.map{ meta, vcf, tbi -> [meta,vcf]}.groupTuple(), "wf_snp").final_vcf
clinvar_vcf = sift_clinvar_snp_vcf(final_vcf, genome_build, "snp").final_vcf_clinvar
}
// Run vcf statistics on the final VCF file
vcf_stats = vcfStats(final_vcf)
// Prepare the report
snp_reporting = report_snp(vcf_stats, clinvar_vcf)
json_snp = snp_reporting.snp_stats_json
if (params.output_report){
snp_report = snp_reporting.report
} else {
snp_report = Channel.empty()
}
// Output for SNP
snp_report
.concat(clair3_results)
.concat(final_vcf.map{meta, vcf, tbi -> [vcf, tbi]})
.concat(clinvar_vcf)
.flatten() | output_snp
} else {
json_snp = Channel.empty()
}
// wf-human-mod
// Validate modified bam
if (params.mod){
// Perform validation on the initial BAM, to allow running on the
// fragmented BAMs when phasing is required
validate_modbam(pass_bam_channel, ref_channel)
// Warn of input without modified base tags
validate_modbam.out.branch{
stdbam: it[-1] == '65'
modbam: it[-1] == '0'
}.set{validated_modbam}
// Log warn if it is not modbam
validated_modbam.stdbam.subscribe{
it -> log.warn "Input ${it[0]} does not contain modified base tags. Was a modified basecalling model selected when basecalling this data?"
}
modbam_ch = validated_modbam.modbam
.map{cram, crai, meta, code -> [cram, crai, meta]}
// Compute the probabilities on the valid modbam
modkit_probs = sample_probs(modbam_ch, ref_channel)
// Save the other as input, keeping only the necessary elements
if (run_haplotagging){
modkit_bam = clair_vcf.str_bams
} else {
modkit_bam = modbam_ch
}
// If the input is not modBAM, the workflow won't process anything because the
// filtering probabilities are not calculated, preventing downstream processes.
results = mod(
modkit_bam, // Input BAM for modkit
bam_flag, // Flagstats used to define chromosomes to analyse
chromosome_codes, // Accepted chromosome codes for the human genome
modkit_probs, // modkit probabilities for filtering
ref_channel,
run_haplotagging // Define if the data are haplotagged.
)
mod_stats = results.modkit.flatten()
} else {
mod_stats = Channel.empty()
}
// Combine into a final JSON of analyses stats
analyses_jsons = Channel.empty()
| mix(
json_snp,
json_sv
)
| collect
| ifEmpty(OPTIONAL)
final_json = combine_metrics_json(
analyses_jsons,
bam_flag,
bam_hists,
mosdepth_stats,
mosdepth_summary,
hap_check,
sex,
)
publish_artifact(
// emit bams with the "to_align" meta tag
// but only if haplotagging is not on
bam_channel
| filter( { it[2].to_align && !run_haplotagging} )
| mix(
bam_stats.flatten(),
bam_flag.flatten(),
mosdepth_stats.flatten(),
mosdepth_summary.flatten(),
mosdepth_perbase.flatten(),
mod_stats.flatten(),
report_pass.flatten(),
report_fail.flatten(),
final_json.flatten(),
coverage_summary.flatten(),
hap_check.flatten()
)
| filter{it.name != 'OPTIONAL_FILE'}
)
}
workflow.onComplete {
Pinguscript.ping_complete(nextflow, workflow, params)
}
workflow.onError {
Pinguscript.ping_error(nextflow, workflow, params)
}