Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

5 add azure document intelligence as a documentloader #13

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/workflow.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: '3.8'
python-version: '3.9'

- name: Install dependencies
run: |
Expand Down
2 changes: 2 additions & 0 deletions extract_thinker/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from .document_loader.cached_document_loader import CachedDocumentLoader
from .document_loader.document_loader_tesseract import DocumentLoaderTesseract
from .document_loader.document_loader_spreadsheet import DocumentLoaderSpreadSheet
from .document_loader.document_loader_azure_document_intelligence import DocumentLoaderAzureForm
from .document_loader.document_loader_pypdf import DocumentLoaderPyPdf
from .document_loader.document_loader_text import DocumentLoaderText
from .models import classification, classification_response
Expand All @@ -18,6 +19,7 @@
'DocumentLoader',
'CachedDocumentLoader',
'DocumentLoaderTesseract',
'DocumentLoaderAzureForm',
'DocumentLoaderPyPdf',
'DocumentLoaderText',
'classification',
Expand Down
11 changes: 0 additions & 11 deletions extract_thinker/document_loader/azure_form_recognizer_loader.py

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
from io import BytesIO
from operator import attrgetter
from typing import Any, List, Union
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import AnalyzeResult, DocumentPage, DocumentTable, Point
from azure.ai.formrecognizer import DocumentAnalysisClient
from extract_thinker.document_loader.cached_document_loader import CachedDocumentLoader
from cachetools import cachedmethod
from cachetools.keys import hashkey


class DocumentLoaderAzureForm(CachedDocumentLoader):
def __init__(self, subscription_key: str, endpoint: str, content: Any = None, cache_ttl: int = 300):
super().__init__(content, cache_ttl)
self.subscription_key = subscription_key
self.endpoint = endpoint
self.credential = AzureKeyCredential(self.subscription_key)
self.client = DocumentAnalysisClient(endpoint=self.endpoint, credential=self.credential)

@cachedmethod(cache=attrgetter('cache'), key=lambda self, file_path: hashkey(file_path))
def load_content_from_file(self, file_path: str) -> Union[str, object]:
try:
with open(file_path, "rb") as document:
poller = self.client.begin_analyze_document("prebuilt-layout", document)
result = poller.result()
return self.process_result(result)
except Exception as e:
raise Exception(f"Error processing file: {e}") from e

@cachedmethod(cache=attrgetter('cache'), key=lambda self, stream: hashkey(id(stream)))
def load_content_from_stream(self, stream: Union[BytesIO, str]) -> Union[str, object]:
try:
poller = self.client.begin_analyze_document("prebuilt-layout", stream)
result = poller.result()
return self.process_result(result)
except Exception as e:
raise Exception(f"Error processing stream: {e}") from e

def process_result(self, result: AnalyzeResult) -> List[dict]:
extract_results = []
tables = self.build_tables(result.tables)
for page in result.pages:
paragraphs = [p.content for p in page.lines]
tables = self.build_tables(result.tables)
# words_with_locations = self.process_words(page)
# Remove lines that are present in tables
paragraphs = self.remove_lines_present_in_tables(paragraphs, tables)
output = {
#"content": result.content,
"paragraphs": paragraphs,
#"words": words_with_locations,
"tables": tables.get(page.page_number, [])
}
extract_results.append(output)
return {"pages": extract_results}

def remove_lines_present_in_tables(self, paragraphs: List[str], tables: dict[int, List[List[str]]]) -> List[str]:
for table in tables.values():
for row in table:
for cell in row:
if cell in paragraphs:
paragraphs.remove(cell)
return paragraphs

def page_to_string(self, page: DocumentPage) -> str:
page_string = ""
for word in page.words:
for point in word.polygon:
page_string += f"({point.x}, {point.y}): {word.content}\n"
return page_string

def process_words(self, page: DocumentPage) -> List[dict]:
words_with_locations = []

for word in page.words:
word_info = {
"content": word.content,
"bounding_box": {
"points": word.polygon
},
"page_number": page.page_number
}
words_with_locations.append(word_info)

return words_with_locations

def build_tables(self, tables: List[DocumentTable]) -> dict[int, List[List[str]]]:
table_data = {}
for table in tables:
rows = []
for row_idx in range(table.row_count):
row = []
for cell in table.cells:
if cell.row_index == row_idx:
row.append(cell.content)
rows.append(row)
# Use the page number as the key for the dictionary
table_data[table.bounding_regions[0].page_number] = rows
return table_data

def build_points(self, bounding_box: List[Point]) -> List[dict]:
return [{"x": point.x, "y": point.y} for point in bounding_box]

def load_content_from_stream_list(self, stream: BytesIO) -> List[Any]:
pass

def load_content_from_file_list(self, file_path: str) -> List[Any]:
pass
Loading
Loading