Skip to content

一键预览 OpenCV 60 种图像效果,图像预处理 pipeline 工具

Notifications You must be signed in to change notification settings

dyh/opencv_tools

Repository files navigation

图像预处理 pipeline 工具

一键预览 OpenCV 60 种图像效果

视频

bilibili

bilibili

图像色彩

image_color.py

  • 色度/色调
  • 饱和度
  • 纯度/亮度
  • 固定饱和度s
  • 固定亮度v
  • 固定色度h + 固定饱和度s
  • 固定色度h + 固定亮度v
  • 固定饱和度s + 固定亮度v

图像变换

image_transformation.py

  • 形态学滤波器腐蚀和膨胀图像
  • 腐蚀 3x3
  • 膨胀 3x3 3次
  • 腐蚀 7x7
  • 腐蚀 3x3 3次
  • 形态学滤波器开启和闭合图像
  • Close the image
  • Open the image
  • 灰度图像中应用形态学运算 Gradient | Edge
  • Apply threshold to obtain a binary image
  • 7x7 Black Top-hat Image
  • Apply threshold to obtain a binary image
  • Apply the black top-hat transform using a 7x7 structuring element

图像过滤

  • Blur the image with a mean filter
  • Blur the image with a mean filter 9x9
  • 缩减 采样
  • resizing with NN
  • resizing with bilinear
  • 中值滤波
  • 定向滤波器
  • Compute Sobel X derivative
  • Compute Sobel Y derivative
  • Compute norm of Sobel
  • Compute Sobel X derivative (7x7)
  • Apply threshold to Sobel norm (low threshold value)
  • Apply threshold to Sobel norm (high threshold value)
  • down-sample and up-sample the image
  • down-sample and up-sample the image
  • cv2.subtract
  • cv2.subtract gauss15 - gauss05
  • cv2.subtract gauss22 - gauss20

提取直线、轮廓、区域

image_outline.py

  • Canny Contours
  • Canny Contours Gray
  • Hough tranform for line detection
  • Circles with HoughP
  • Get the contours, Contours with RETR_LIST

图像增强-白平衡等

image_enhancement.py

  • 简单白平衡
  • 灰度世界算法
  • 直方图均衡化
  • 视网膜-大脑皮层(Retinex)增强算法
  • Single Scale Retinex
  • Multi Scale Retinex
  • Multi Scale Retinex With Color Restoration
  • 自动白平衡 AWB
  • 自动色彩均衡 ACE

运行环境

  • python 3.6+,pip 20+

  • pip install -r requirements.txt

    Pillow==8.0.1
    numpy==1.19.4
    opencv-python==4.4.0.46
    six==1.15.0
    matplotlib==3.3.3
    cycler==0.10.0
    kiwisolver==1.3.1
    pkg-resources==0.0.0
    pyparsing==2.4.7
    python-dateutil==2.8.1
    

如何运行

  1. 克隆代码

    $ git clone https://github.com/dyh/opencv_tools.git
    
  2. 进入目录

    $ cd opencv_tools
    
  3. 创建 python 虚拟环境

    $ python3 -m venv venv
    
  4. 激活虚拟环境

    $ source venv/bin/activate
    
  5. 升级pip

    $ python -m pip install --upgrade pip
    
  6. 安装软件包

    $ pip install -r requirements.txt
    
  7. 在 main.py 文件中,设置要处理的图片路径 file_path,例如

    file_path = './images/000000050145.jpg'
    
  8. 运行程序

    python main.py
    
  9. 程序将在 output 目录下输出60张图片

About

一键预览 OpenCV 60 种图像效果,图像预处理 pipeline 工具

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published