Skip to content

Commit

Permalink
Merge branch 'master' into feat_snowflake_swap
Browse files Browse the repository at this point in the history
  • Loading branch information
mayurinehate authored Oct 23, 2024
2 parents 3f9c6ec + 326afc6 commit 1dff042
Show file tree
Hide file tree
Showing 84 changed files with 2,079 additions and 364 deletions.
2 changes: 2 additions & 0 deletions datahub-frontend/app/auth/AuthModule.java
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import com.linkedin.util.Configuration;
import config.ConfigurationProvider;
import controllers.SsoCallbackController;
import io.datahubproject.metadata.context.ValidationContext;
import java.nio.charset.StandardCharsets;
import java.util.Collections;

Expand Down Expand Up @@ -187,6 +188,7 @@ protected OperationContext provideOperationContext(
.authorizationContext(AuthorizationContext.builder().authorizer(Authorizer.EMPTY).build())
.searchContext(SearchContext.EMPTY)
.entityRegistryContext(EntityRegistryContext.builder().build(EmptyEntityRegistry.EMPTY))
.validationContext(ValidationContext.builder().alternateValidation(false).build())
.build(systemAuthentication);
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
import io.datahubproject.metadata.context.OperationContextConfig;
import io.datahubproject.metadata.context.RetrieverContext;
import io.datahubproject.metadata.context.ServicesRegistryContext;
import io.datahubproject.metadata.context.ValidationContext;
import io.datahubproject.metadata.services.RestrictedService;
import java.util.List;
import javax.annotation.Nonnull;
Expand Down Expand Up @@ -161,7 +162,8 @@ protected OperationContext javaSystemOperationContext(
@Nonnull final GraphService graphService,
@Nonnull final SearchService searchService,
@Qualifier("baseElasticSearchComponents")
BaseElasticSearchComponentsFactory.BaseElasticSearchComponents components) {
BaseElasticSearchComponentsFactory.BaseElasticSearchComponents components,
@Nonnull final ConfigurationProvider configurationProvider) {

EntityServiceAspectRetriever entityServiceAspectRetriever =
EntityServiceAspectRetriever.builder()
Expand All @@ -186,6 +188,10 @@ protected OperationContext javaSystemOperationContext(
.aspectRetriever(entityServiceAspectRetriever)
.graphRetriever(systemGraphRetriever)
.searchRetriever(searchServiceSearchRetriever)
.build(),
ValidationContext.builder()
.alternateValidation(
configurationProvider.getFeatureFlags().isAlternateMCPValidation())
.build());

entityServiceAspectRetriever.setSystemOperationContext(systemOperationContext);
Expand Down
2 changes: 1 addition & 1 deletion docker/kafka-setup/Dockerfile
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
ARG KAFKA_DOCKER_VERSION=7.4.6
ARG KAFKA_DOCKER_VERSION=7.7.1

# Defining custom repo urls for use in enterprise environments. Re-used between stages below.
ARG ALPINE_REPO_URL=http://dl-cdn.alpinelinux.org/alpine
Expand Down
2 changes: 2 additions & 0 deletions docker/profiles/docker-compose.gms.yml
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@ x-datahub-gms-service: &datahub-gms-service
environment: &datahub-gms-env
<<: [*primary-datastore-mysql-env, *graph-datastore-search-env, *search-datastore-env, *datahub-quickstart-telemetry-env, *kafka-env]
ELASTICSEARCH_QUERY_CUSTOM_CONFIG_FILE: ${ELASTICSEARCH_QUERY_CUSTOM_CONFIG_FILE:-search_config.yaml}
ALTERNATE_MCP_VALIDATION: ${ALTERNATE_MCP_VALIDATION:-true}
healthcheck:
test: curl -sS --fail http://datahub-gms:${DATAHUB_GMS_PORT:-8080}/health
start_period: 90s
Expand Down Expand Up @@ -182,6 +183,7 @@ x-datahub-mce-consumer-service: &datahub-mce-consumer-service
- ${DATAHUB_LOCAL_MCE_ENV:-empty2.env}
environment: &datahub-mce-consumer-env
<<: [*primary-datastore-mysql-env, *graph-datastore-search-env, *search-datastore-env, *datahub-quickstart-telemetry-env, *kafka-env]
ALTERNATE_MCP_VALIDATION: ${ALTERNATE_MCP_VALIDATION:-true}

x-datahub-mce-consumer-service-dev: &datahub-mce-consumer-service-dev
<<: *datahub-mce-consumer-service
Expand Down
7 changes: 7 additions & 0 deletions docs-website/sidebars.js
Original file line number Diff line number Diff line change
Expand Up @@ -101,12 +101,19 @@ module.exports = {
{
label: "Automations",
type: "category",
collapsed: false,
items: [
{
label: "Documentation Propagation",
type: "doc",
id: "docs/automations/docs-propagation",
},
{
label: "BigQuery Metadata Sync",
type: "doc",
id: "docs/automations/bigquery-metadata-sync",
className: "saasOnly",
},
{
label: "Snowflake Tag Sync",
type: "doc",
Expand Down
177 changes: 177 additions & 0 deletions docs/automations/bigquery-metadata-sync.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
import FeatureAvailability from '@site/src/components/FeatureAvailability';

# BigQuery Metadata Sync Automation

<FeatureAvailability saasOnly />

## Introduction

BigQuery Metadata Sync is an automation that synchronizes DataHub Tags, Table and Column descriptions, and Column Glossary Terms with
BigQuery. This automation is exclusively available in DataHub Cloud (Acryl).

## Use-Cases

- Maintain consistent metadata across DataHub and BigQuery
- Improve data discovery by propagating rich descriptions back to BigQuery
- Enhance data governance by applying Policy Tags based on DataHub Glossary Terms
- Streamline data classification by syncing DataHub Tags to BigQuery Labels
- Facilitate compliance efforts by automatically tagging sensitive data columns
- Support data lineage tracking by keeping metadata aligned across platforms

## Capabilities

- Automatically add DataHub Tags as BigQuery Labels to tables
- Automatically add DataHub Table descriptions to BigQuery Tables
- Automatically add DataHub Column descriptions to BigQuery Columns
- Automatically add DataHub Glossary Terms as Policy Tags to BigQuery Columns (under a **DataHub** taxonomy created in BigQuery)
- Automatically remove Policy Tags/Table Labels when removed in DataHub


## Required Bigquery Permissions

| Action | Required Permission(s) |
|--------|------------------------|
| Create/update policy tags and taxonomies | `bigquery.taxonomies.create` <br/> `bigquery.taxonomies.update` |
| Assign/remove policy tags from columns | `bigquery.tables.updateTag` |
| Edit table description | `bigquery.tables.update` |
| Edit column description | `bigquery.tables.update` |
| Assign/remove labels from tables | `bigquery.tables.update` |

## Enabling BigQuery Sync Automation

1. **Navigate to Automations**: Click on 'Govern' > 'Automations' in the navigation bar.

<p align="left">
<img width="30%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/automation/saas/automations-nav-link.png"/>
</p>

2. **Create An Automation**: Click on 'Create' and select 'BigQuery Tag Propagation'.

<p align="left">
<img width="50%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/automation/saas/bigquery-propagation/automation-type.png"/>
</p>

3. **Configure Automation**:

1. **Select a Propagation Action**

<p align="left">
<img width="50%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/automation/saas/bigquery-propagation/automation-form.png"/>
</p>

| Propagation Type | DataHub Entity | BigQuery Entity | Note |
| -------- | ------- | ------- | ------- |
| Table Tags as Labels | [Table Tag](https://datahubproject.io/docs/tags/) | [BigQuery Label](https://cloud.google.com/bigquery/docs/labels-intro) | - |
| Column Glossary Terms as Policy Tags | [Glossary Term on Table Column](https://datahubproject.io/docs/0.14.0/glossary/business-glossary/) | [Policy Tag](https://cloud.google.com/bigquery/docs/best-practices-policy-tags) | <ul><li>Assigned Policy tags are created under DataHub taxonomy.</li></ul><ul><li>Only the latest assigned glossary term set as policy tag. BigQuery only supports one assigned policy tag.</li></ul> <ul><li>Policy Tags are not synced to DataHub as glossary term from BigQuery.</li></ul>
| Table Descriptions | [Table Description](https://datahubproject.io/docs/api/tutorials/descriptions/) | Table Description | - |
| Column Descriptions | [Column Description](https://datahubproject.io/docs/api/tutorials/descriptions/) | Column Description | - |

:::note

You can limit propagation based on specific Tags and Glossary Terms. If none are selected, ALL Tags or Glossary Terms will be automatically propagated to BigQuery tables and columns. (The recommended approach is to not specify a filter to avoid inconsistent states.)

:::

:::note

- BigQuery supports only one Policy Tag per table field. Consequently, the most recently assigned Glossary Term will be set as the Policy Tag for that field.
- Policy Tags cannot be applied to fields in External tables. Therefore, if a Glossary Term is assigned to a field in an External table, it will not be applied.

:::

2. **Fill in the required fields to connect to BigQuery, along with the name, description, and category**

<p align="left">
<img width="50%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/automation/saas/bigquery-propagation/connection_config.png"/>
</p>

3. **Finally, click 'Save and Run' to start the automation**

## Propagating for Existing Assets

To ensure that all existing table Tags and Column Glossary Terms are propagated to BigQuery, you can back-fill historical data for existing assets. Note that the initial back-filling process may take some time, depending on the number of BigQuery assets you have.

To do so, follow these steps:

1. Navigate to the Automation you created in Step 3 above
2. Click the 3-dot "More" menu

<p align="left">
<img width="30%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/automation/saas/automation-more-menu.png"/>
</p>

3. Click "Initialize"

<p align="left">
<img width="50%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/automation/saas/automation-initialize.png"/>
</p>

This one-time step will kick off the back-filling process for existing descriptions. If you only want to begin propagating descriptions going forward, you can skip this step.

## Viewing Propagated Tags

You can view propagated Tags inside the BigQuery UI to confirm the automation is working as expected.

<p align="left">
<img width="50%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/automation/saas/bigquery-propagation/labels.png"/>
</p>

## Troubleshooting BigQuery Propagation

### Q: What metadata elements support bi-directional syncing between DataHub and BigQuery?

A: The following metadata elements support bi-directional syncing:

- Tags (via BigQuery Labels): Changes made in either DataHub Table Tags or BigQuery Table Labels will be reflected in the other system.
- Descriptions: Both table and column descriptions are synced bi-directionally.

### Q: Are Policy Tags bi-directionally synced?

A: No, BigQuery Policy Tags are only propagated from DataHub to BigQuery, not vice versa. This means that Policy Tags should be mastered in DataHub using the [Business Glossary](https://datahubproject.io/docs/glossary/business-glossary/).

It is recommended to avoid enabling `extract_policy_tags_from_catalog` during
ingestion, as this will ingest policy tags as BigQuery labels. Our sync process
propagates Glossary Term assignments to BigQuery as Policy Tags.

In a future release, we plan to remove this restriction to support full bi-directional syncing.

### Q: What metadata is synced from BigQuery to DataHub during ingestion?

A: During ingestion from BigQuery:

- Tags and descriptions from BigQuery will be ingested into DataHub.
- Existing Policy Tags in BigQuery will not overwrite or create Business Glossary Terms in DataHub. It only syncs assigned column Glossary Terms from DataHub to BigQuery.

### Q: Where should I manage my Business Glossary?

A: The expectation is that you author and manage the glossary in DataHub. Policy tags in BigQuery should be treated as a reflection of the DataHub glossary, not as the primary source of truth.

### Q: Are there any limitations with Policy Tags in BigQuery?

A: Yes, BigQuery only supports one Policy Tag per column. If multiple glossary
terms are assigned to a column in DataHub, only the most recently assigned term
will be set as the policy tag in BigQuery. To reduce the scope of conflicts, you
can set up filters in the BigQuery Metadata Sync to only synchronize terms from
a specific area of the Business Glossary.

### Q: How frequently are changes synced between DataHub and BigQuery?

A: From DataHub to BigQuery, the sync happens instantly (within a few seconds)
when the change occurs in DataHub.

From BigQuery to DataHub, changes are synced when ingestion occurs, and the frequency depends on your custom ingestion schedule. (Visible on the **Integrations** page)

### Q: What happens if there's a conflict between DataHub and BigQuery metadata?

A: In case of conflicts (e.g., a tag is modified in both systems between syncs), the DataHub version will typically take precedence. However, it's best to make changes in one system consistently to avoid potential conflicts.

### Q: What permissions are required for bi-directional syncing?

A: Ensure that the service account used for the automation has the necessary permissions in both DataHub and BigQuery to read and write metadata. See the required BigQuery permissions at the top of the page.

## Related Documentation

- [DataHub Tags Documentation](https://datahubproject.io/docs/tags/)
- [DataHub Glossary Documentation](https://datahubproject.io/docs/glossary/business-glossary/)
- [BigQuery Labels Documentation](https://cloud.google.com/bigquery/docs/labels-intro)
- [BigQuery Policy Tags Documentation](https://cloud.google.com/bigquery/docs/best-practices-policy-tags)
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
@AllArgsConstructor
@EqualsAndHashCode
public abstract class PluginSpec {
protected static String ENTITY_WILDCARD = "*";
protected static String WILDCARD = "*";

@Nonnull
public abstract AspectPluginConfig getConfig();
Expand Down Expand Up @@ -50,7 +50,7 @@ protected boolean isEntityAspectSupported(
return (getConfig().getSupportedEntityAspectNames().stream()
.anyMatch(
supported ->
ENTITY_WILDCARD.equals(supported.getEntityName())
WILDCARD.equals(supported.getEntityName())
|| supported.getEntityName().equals(entityName)))
&& isAspectSupported(aspectName);
}
Expand All @@ -59,13 +59,16 @@ protected boolean isAspectSupported(@Nonnull String aspectName) {
return getConfig().getSupportedEntityAspectNames().stream()
.anyMatch(
supported ->
ENTITY_WILDCARD.equals(supported.getAspectName())
WILDCARD.equals(supported.getAspectName())
|| supported.getAspectName().equals(aspectName));
}

protected boolean isChangeTypeSupported(@Nullable ChangeType changeType) {
return (changeType == null && getConfig().getSupportedOperations().isEmpty())
|| getConfig().getSupportedOperations().stream()
.anyMatch(supported -> supported.equalsIgnoreCase(String.valueOf(changeType)));
.anyMatch(
supported ->
WILDCARD.equals(supported)
|| supported.equalsIgnoreCase(String.valueOf(changeType)));
}
}
14 changes: 1 addition & 13 deletions metadata-ingestion-modules/dagster-plugin/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,14 +13,6 @@ def get_long_description():
return pathlib.Path(os.path.join(root, "README.md")).read_text()


rest_common = {"requests", "requests_file"}

sqlglot_lib = {
# Using an Acryl fork of sqlglot.
# https://github.com/tobymao/sqlglot/compare/main...hsheth2:sqlglot:main?expand=1
"acryl-sqlglot[rs]==24.0.1.dev7",
}

_version: str = package_metadata["__version__"]
_self_pin = (
f"=={_version}"
Expand All @@ -32,11 +24,7 @@ def get_long_description():
# Actual dependencies.
"dagster >= 1.3.3",
"dagit >= 1.3.3",
*rest_common,
# Ignoring the dependency below because it causes issues with the vercel built wheel install
# f"acryl-datahub[datahub-rest]{_self_pin}",
"acryl-datahub[datahub-rest]",
*sqlglot_lib,
f"acryl-datahub[datahub-rest,sql-parser]{_self_pin}",
}

mypy_stubs = {
Expand Down
2 changes: 1 addition & 1 deletion metadata-ingestion/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ target-version = ['py37', 'py38', 'py39', 'py310']
[tool.isort]
combine_as_imports = true
indent = ' '
known_future_library = ['__future__', 'datahub.utilities._markupsafe_compat', 'datahub_provider._airflow_compat']
known_future_library = ['__future__', 'datahub.utilities._markupsafe_compat', 'datahub.sql_parsing._sqlglot_patch']
profile = 'black'
sections = 'FUTURE,STDLIB,THIRDPARTY,FIRSTPARTY,LOCALFOLDER'
skip_glob = 'src/datahub/metadata'
Expand Down
3 changes: 0 additions & 3 deletions metadata-ingestion/scripts/avro_codegen.py
Original file line number Diff line number Diff line change
Expand Up @@ -361,9 +361,6 @@ def write_urn_classes(key_aspects: List[dict], urn_dir: Path) -> None:

for aspect in key_aspects:
entity_type = aspect["Aspect"]["keyForEntity"]
if aspect["Aspect"]["entityCategory"] == "internal":
continue

code += generate_urn_class(entity_type, aspect)

(urn_dir / "urn_defs.py").write_text(code)
Expand Down
15 changes: 11 additions & 4 deletions metadata-ingestion/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,9 +99,11 @@
}

sqlglot_lib = {
# Using an Acryl fork of sqlglot.
# We heavily monkeypatch sqlglot.
# Prior to the patching, we originally maintained an acryl-sqlglot fork:
# https://github.com/tobymao/sqlglot/compare/main...hsheth2:sqlglot:main?expand=1
"acryl-sqlglot[rs]==25.25.2.dev9",
"sqlglot[rs]==25.26.0",
"patchy==2.8.0",
}

classification_lib = {
Expand All @@ -122,6 +124,10 @@
"more_itertools",
}

cachetools_lib = {
"cachetools",
}

sql_common = (
{
# Required for all SQL sources.
Expand All @@ -138,6 +144,7 @@
# https://github.com/ipython/traitlets/issues/741
"traitlets<5.2.2",
"greenlet",
*cachetools_lib,
}
| usage_common
| sqlglot_lib
Expand Down Expand Up @@ -213,7 +220,7 @@
"pandas",
"cryptography",
"msal",
"cachetools",
*cachetools_lib,
} | classification_lib

trino = {
Expand Down Expand Up @@ -457,7 +464,7 @@
| sqlglot_lib
| classification_lib
| {"db-dtypes"} # Pandas extension data types
| {"cachetools"},
| cachetools_lib,
"s3": {*s3_base, *data_lake_profiling},
"gcs": {*s3_base, *data_lake_profiling},
"abs": {*abs_base, *data_lake_profiling},
Expand Down
Loading

0 comments on commit 1dff042

Please sign in to comment.