Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding foundation model example notebooks #51

Merged
merged 1 commit into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 66 additions & 42 deletions examples/foundation-model-examples/chronos-example.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,57 @@
# Databricks notebook source
# MAGIC %md
# MAGIC This is an example notebook that shows how to use [chronos](https://github.com/amazon-science/chronos-forecasting/tree/main) models on Databricks.
# MAGIC
# MAGIC The notebook loads the model, distributes the inference, registers the model, deploys the model and makes online forecasts.

# COMMAND ----------

# MAGIC %pip install git+https://github.com/amazon-science/chronos-forecasting.git --quiet
# MAGIC dbutils.library.restartPython()

# COMMAND ----------

# MAGIC %md
# MAGIC ## Distributed Inference
# MAGIC ## Prepare Data

# COMMAND ----------

catalog = "solacc_uc" # Name of the catalog we use to manage our assets
db = "mmf" # Name of the schema we use to manage our assets (e.g. datasets)
n = 100 # Number of time series to sample

# COMMAND ----------

# This cell will create tables: {catalog}.{db}.m4_daily_train, {catalog}.{db}.m4_monthly_train, {catalog}.{db}.rossmann_daily_train, {catalog}.{db}.rossmann_daily_test

dbutils.notebook.run("data_preparation", timeout_seconds=0, arguments={"catalog": catalog, "db": db, "n": n})

# COMMAND ----------

# MAGIC %md
# MAGIC

# COMMAND ----------

from pyspark.sql.functions import collect_list

# Make sure that the data exists
df = spark.table(f'{catalog}.{db}.m4_daily_train')
df = df.groupBy('unique_id').agg(collect_list('ds').alias('ds'), collect_list('y').alias('y'))
display(df)

# COMMAND ----------

# MAGIC %md
# MAGIC ## Distribute Inference

# COMMAND ----------

import pandas as pd
import numpy as np
import torch
from typing import Iterator
from pyspark.sql.functions import collect_list, pandas_udf
from pyspark.sql.functions import pandas_udf


def create_get_horizon_timestamps(freq, prediction_length):
Expand Down Expand Up @@ -66,22 +104,23 @@ def forecast_udf(bulk_iterator: Iterator[pd.Series]) -> Iterator[pd.Series]:

# COMMAND ----------

# Make sure that the data exists
df = spark.table('solacc_uc.mmf.m4_daily_train')
df = df.groupBy('unique_id').agg(collect_list('ds').alias('ds'), collect_list('y').alias('y'))
chronos_model = "chronos-t5-tiny" # Alternatibely chronos-t5-mini, chronos-t5-small, chronos-t5-base, chronos-t5-large
prediction_length = 10 # Time horizon for forecasting
num_samples = 10 # Number of forecast to generate. We will take median as our final forecast.
batch_size = 4 # Number of time series to process simultaneously
freq = "D" # Frequency of the time series
device_count = torch.cuda.device_count() # Number of GPUs available

# COMMAND ----------

get_horizon_timestamps = create_get_horizon_timestamps(freq="D", prediction_length=10)
get_horizon_timestamps = create_get_horizon_timestamps(freq=freq, prediction_length=prediction_length)
forecast_udf = create_forecast_udf(
repository="amazon/chronos-t5-tiny",
prediction_length=10,
num_samples=10,
batch_size=4,
repository=f"amazon/{chronos_model}",
prediction_length=prediction_length,
num_samples=num_samples,
batch_size=batch_size,
)

device_count = torch.cuda.device_count()

forecasts = df.repartition(device_count).select(
df.unique_id,
get_horizon_timestamps(df.ds).alias("ds"),
Expand All @@ -100,7 +139,6 @@ def forecast_udf(bulk_iterator: Iterator[pd.Series]) -> Iterator[pd.Series]:
import mlflow
import torch
import numpy as np
from mlflow.models import infer_signature
from mlflow.models.signature import ModelSignature
from mlflow.types import DataType, Schema, TensorSpec
mlflow.set_registry_uri("databricks-uc")
Expand All @@ -125,17 +163,18 @@ def predict(self, context, input_data, params=None):
)
return forecast.numpy()

pipeline = ChronosModel("amazon/chronos-t5-tiny")
pipeline = ChronosModel(f"amazon/{chronos_model}")
input_schema = Schema([TensorSpec(np.dtype(np.double), (-1, -1))])
output_schema = Schema([TensorSpec(np.dtype(np.uint8), (-1, -1, -1))])
signature = ModelSignature(inputs=input_schema, outputs=output_schema)
input_example = np.random.rand(1, 52)
registered_model_name=f"{catalog}.{db}.{chronos_model}"

with mlflow.start_run() as run:
mlflow.pyfunc.log_model(
"model",
python_model=pipeline,
registered_model_name="solacc_uc.mmf.chronos-t5-tiny",
registered_model_name=registered_model_name,
signature=signature,
input_example=input_example,
pip_requirements=[
Expand All @@ -145,34 +184,27 @@ def predict(self, context, input_data, params=None):

# COMMAND ----------

import mlflow
from mlflow import MlflowClient
import pandas as pd
import numpy as np

client = MlflowClient()
mlflow.set_registry_uri("databricks-uc")


def get_latest_model_version(client, registered_name):
def get_latest_model_version(client, registered_model_name):
latest_version = 1
for mv in client.search_model_versions(f"name='{registered_name}'"):
for mv in client.search_model_versions(f"name='{registered_model_name}'"):
version_int = int(mv.version)
if version_int > latest_version:
latest_version = version_int
return latest_version

registered_name = f"solacc_uc.mmf.chronos-t5-tiny"
model_version = get_latest_model_version(client, registered_name)
logged_model = f"models:/{registered_name}/{model_version}"
model_version = get_latest_model_version(client, registered_model_name)
logged_model = f"models:/{registered_model_name}/{model_version}"

# Load model as a PyFuncModel
loaded_model = mlflow.pyfunc.load_model(logged_model)

# Create random input data
input_data = np.random.rand(5, 52) # (batch, series)

# Generate forecast
# Generate forecasts
loaded_model.predict(input_data)

# COMMAND ----------
Expand All @@ -182,13 +214,8 @@ def get_latest_model_version(client, registered_name):

# COMMAND ----------

catalog = "solacc_uc"
log_schema = "mmf" # A schema within the catalog where the inferece log is going to be stored
model_serving_endpoint_name = "chronos-t5-tiny"

token = dbutils.notebook.entry_point.getDbutils().notebook().getContext().apiToken().getOrElse(None)

# With the token, you can create our authorization header for our subsequent REST calls
token = dbutils.notebook.entry_point.getDbutils().notebook().getContext().apiToken().getOrElse(None)
headers = {"Authorization": f"Bearer {token}", "Content-Type": "application/json"}

# Next you need an endpoint at which to execute your request which you can get from the notebook's tags collection
Expand All @@ -204,12 +231,14 @@ def get_latest_model_version(client, registered_name):

import requests

model_serving_endpoint_name = chronos_model

my_json = {
"name": model_serving_endpoint_name,
"config": {
"served_models": [
{
"model_name": registered_name,
"model_name": registered_model_name,
"model_version": model_version,
"workload_type": "GPU_SMALL",
"workload_size": "Small",
Expand All @@ -218,20 +247,15 @@ def get_latest_model_version(client, registered_name):
],
"auto_capture_config": {
"catalog_name": catalog,
"schema_name": log_schema,
"schema_name": db,
"table_name_prefix": model_serving_endpoint_name,
},
},
}

# Make sure to the schema for the inference table exists
_ = spark.sql(
f"CREATE SCHEMA IF NOT EXISTS {catalog}.{log_schema}"
)

# Make sure to drop the inference table of it exists
_ = spark.sql(
f"DROP TABLE IF EXISTS {catalog}.{log_schema}.`{model_serving_endpoint_name}_payload`"
f"DROP TABLE IF EXISTS {catalog}.{db}.`{model_serving_endpoint_name}_payload`"
)

# COMMAND ----------
Expand Down Expand Up @@ -338,7 +362,7 @@ def wait_for_endpoint():
# COMMAND ----------

# MAGIC %md
# MAGIC ## Online Inference
# MAGIC ## Online Forecast

# COMMAND ----------

Expand Down
144 changes: 144 additions & 0 deletions examples/foundation-model-examples/data_preparation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
# Databricks notebook source
# MAGIC %pip install datasetsforecast==0.0.8 --quiet
# MAGIC dbutils.library.restartPython()

# COMMAND ----------

import pathlib
import pandas as pd
from datasetsforecast.m4 import M4
import logging
logger = spark._jvm.org.apache.log4j
logging.getLogger("py4j.java_gateway").setLevel(logging.ERROR)
logging.getLogger("py4j.clientserver").setLevel(logging.ERROR)

# COMMAND ----------

dbutils.widgets.text("catalog", "")
dbutils.widgets.text("db", "")
dbutils.widgets.text("n", "")
dbutils.widgets.text("volume", "rossmann")

catalog = dbutils.widgets.get("catalog") # Name of the catalog we use to manage our assets
db = dbutils.widgets.get("db") # Name of the schema we use to manage our assets (e.g. datasets)
volume = dbutils.widgets.get("volume") # Name of the schema where you have your rossmann dataset csv sotred
n = int(dbutils.widgets.get("n")) # Number of time series to sample

# Make sure the catalog, schema and volume exist
_ = spark.sql(f"CREATE CATALOG IF NOT EXISTS {catalog}")
_ = spark.sql(f"CREATE SCHEMA IF NOT EXISTS {catalog}.{db}")
_ = spark.sql(f"CREATE VOLUME IF NOT EXISTS {catalog}.{db}.{volume}")

# COMMAND ----------

# MAGIC %md
# MAGIC ## Daily M4 Data

# COMMAND ----------

def create_m4_daily():
y_df, _, _ = M4.load(directory=str(pathlib.Path.home()), group="Daily")
_ids = [f"D{i}" for i in range(1, n)]
y_df = (
y_df.groupby("unique_id")
.filter(lambda x: x.unique_id.iloc[0] in _ids)
.groupby("unique_id")
.apply(transform_group_daily)
.reset_index(drop=True)
)
return y_df


def transform_group_daily(df):
unique_id = df.unique_id.iloc[0]
_start = pd.Timestamp("2020-01-01")
_end = _start + pd.DateOffset(days=int(df.count()[0]) - 1)
date_idx = pd.date_range(start=_start, end=_end, freq="D", name="ds")
res_df = pd.DataFrame(data=[], index=date_idx).reset_index()
res_df["unique_id"] = unique_id
res_df["y"] = df.y.values
return res_df


(
spark.createDataFrame(create_m4_daily())
.write.format("delta").mode("overwrite")
.saveAsTable(f"{catalog}.{db}.m4_daily_train")
)

print(f"Saved data to {catalog}.{db}.m4_daily_train")

# COMMAND ----------

# MAGIC %md
# MAGIC ## Monthly M4 Data

# COMMAND ----------

def create_m4_monthly():
y_df, _, _ = M4.load(directory=str(pathlib.Path.home()), group="Monthly")
_ids = [f"M{i}" for i in range(1, n + 1)]
y_df = (
y_df.groupby("unique_id")
.filter(lambda x: x.unique_id.iloc[0] in _ids)
.groupby("unique_id")
.apply(transform_group_monthly)
.reset_index(drop=True)
)
return y_df


def transform_group_monthly(df):
unique_id = df.unique_id.iloc[0]
_cnt = 60 # df.count()[0]
_start = pd.Timestamp("2018-01-01")
_end = _start + pd.DateOffset(months=_cnt)
date_idx = pd.date_range(start=_start, end=_end, freq="M", name="date")
_df = (
pd.DataFrame(data=[], index=date_idx)
.reset_index()
.rename(columns={"index": "date"})
)
_df["unique_id"] = unique_id
_df["y"] = df[:60].y.values
return _df


(
spark.createDataFrame(create_m4_monthly())
.write.format("delta").mode("overwrite")
.saveAsTable(f"{catalog}.{db}.m4_monthly_train")
)

print(f"Saved data to {catalog}.{db}.m4_monthly_train")

# COMMAND ----------

# MAGIC %md
# MAGIC ## Daily Rossmann with Exogenous Regressors

# COMMAND ----------

# MAGIC %md Download the dataset from [Kaggle](kaggle.com/competitions/rossmann-store-sales/data) and store them in the volume.

# COMMAND ----------

# Randomly select 100 stores to forecast
import random
random.seed(7)

# Number of time series to sample
sample = True
stores = sorted(random.sample(range(0, 1000), n))

train = spark.read.csv(f"/Volumes/{catalog}/{db}/{volume}/train.csv", header=True, inferSchema=True)
test = spark.read.csv(f"/Volumes/{catalog}/{db}/{volume}/test.csv", header=True, inferSchema=True)

if sample:
train = train.filter(train.Store.isin(stores))
test = test.filter(test.Store.isin(stores))

train.write.mode("overwrite").option("mergeSchema", "true").saveAsTable(f"{catalog}.{db}.rossmann_daily_train")
test.write.mode("overwrite").option("mergeSchema", "true").saveAsTable(f"{catalog}.{db}.rossmann_daily_test")

print(f"Saved data to {catalog}.{db}.rossmann_daily_train and {catalog}.{db}.rossmann_daily_test")
Loading
Loading