Skip to content

Commit

Permalink
Merge with latest main
Browse files Browse the repository at this point in the history
  • Loading branch information
israelmcmc committed Jan 29, 2024
2 parents 857741c + 1fb874e commit d50f2fc
Show file tree
Hide file tree
Showing 32 changed files with 20,396 additions and 11,878 deletions.
266 changes: 131 additions & 135 deletions cosipy/data_io/BinnedData.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,24 +17,40 @@


class BinnedData(UnBinnedData):

"""Handles binned data."""

def get_binned_data(self, unbinned_data=None, output_name=None, \
make_binning_plots=False, psichi_binning="galactic", psichi_old=False):
make_binning_plots=False, psichi_binning="galactic", event_range=None):

"""
Bin the data using histpy and mhealpy.
"""Bin the data using histpy and mhealpy.
Parameters
----------
unbinned_data : str, optional
Name of unbinned data file to use. Input file is either
.fits or .hdf5 as specified in the unbinned_output
parameter in inputs.yaml.
output_name : str, optional
Prefix of output file.
make_binning_plots : bool, optional
Option to make basic plots of the binning (default is False).
psichi_binning : str, optional
'galactic' for binning psichi in Galactic coordinates, or
'local' for binning in local coordinates. Default is Galactic.
event_range : list of integers, optional
min and max event to use for the binning.
Optional inputs:
- unbinned_data: read in unbinned data from file.
Input file is either .fits or .hdf5 as specified in
the unbinned_output parameter in inputs.yaml.
- output_name: Prefix of output file.
- make_binning_plots: Option to make basic plots of the binning.
Default is False.
- psichi_binning: 'galactic' for binning psichi in Galactic coordinates,
or 'local' for binning in local coordinates. Default is Galactic.
- psichi_old: use old binning definition for psichi.
- This is just here as a temporary sanity check, and will soon be removed.
Returns
-------
binned_data : histpy:Histogram
Data is binned in four axes: time, measured energy,
Compton scattering angle (phi), and scattering direction
(PsiChi).
Note
----
This method constructs the instance attribute, binned_data,
but it does not explicitly return it.
"""

# Make print statement:
Expand All @@ -47,10 +63,11 @@ def get_binned_data(self, unbinned_data=None, output_name=None, \
if self.unbinned_output == 'hdf5':
self.cosi_dataset = self.get_dict_from_hdf5(unbinned_data)

# Get time bins:
min_time = self.tmin
max_time = self.tmax
if type(self.time_bins).__name__ in ['int','float']:
# Get time bins:
min_time = self.tmin
max_time = self.tmax
delta_t = max_time - min_time
num_bins = round(delta_t / self.time_bins)
new_bin_size = delta_t / num_bins
Expand All @@ -77,60 +94,40 @@ def get_binned_data(self, unbinned_data=None, output_name=None, \
number_phi_bins = int(180./self.phi_pix_size)
phi_bin_edges = np.linspace(0,180,number_phi_bins+1)

# Get healpix binning for psi and chi:
if psichi_old == True:
print("using old psichi definition...")
npix = hp.nside2npix(self.nside)
print()
print("PsiChi binning:")
print("Approximate resolution at NSIDE {} is {:.2} deg".format(self.nside, hp.nside2resol(self.nside, arcmin=True) / 60))
print()

# Define the grid and initialize
self.m = HealpixMap(nside = self.nside, scheme = self.scheme, dtype = int)

# Bin psi and chi data:
if psichi_binning not in ['galactic','local']:
print("ERROR: psichi_binning must be either 'galactic' or 'local'")
sys.exit()
if psichi_binning == 'galactic':
PsiChi_pixs = self.m.ang2pix(self.cosi_dataset['Chi galactic'],self.cosi_dataset['Psi galactic'],lonlat=True)
if psichi_binning == 'local':
PsiChi_pixs = self.m.ang2pix(self.cosi_dataset['Psi local'],self.cosi_dataset['Chi local'])
PsiChi_bin_edges = np.arange(0,npix+1,1)

# Fill healpix map:
unique, unique_counts = np.unique(PsiChi_pixs, return_counts=True)
self.m[unique] = unique_counts

# Save healpix map to file:
self.m.write_map("psichi_healpix_map.fits",overwrite=True)

# Initialize histogram:
self.binned_data = Histogram([time_bin_edges, energy_bin_edges, phi_bin_edges, PsiChi_bin_edges], labels = ['Time','Em','Phi','PsiChi'], sparse=True)

# Fill histogram:
self.binned_data.fill(self.cosi_dataset['TimeTags'], self.cosi_dataset['Energies'], np.rad2deg(self.cosi_dataset['Phi']), PsiChi_pixs)

# Define psichi axis and data for binning:
if psichi_old == False:
if psichi_binning == 'galactic':
psichi_axis = HealpixAxis(nside = self.nside, scheme = self.scheme, coordsys = 'galactic', label='PsiChi')
coords = SkyCoord(l=self.cosi_dataset['Chi galactic']*u.deg, b=self.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic')
if psichi_binning == 'local':
psichi_axis = HealpixAxis(nside = self.nside, scheme = self.scheme, coordsys = SpacecraftFrame(), label='PsiChi')
coords = SkyCoord(lon=self.cosi_dataset['Chi local']*u.rad, lat=((np.pi/2.0) - self.cosi_dataset['Psi local'])*u.rad, frame = SpacecraftFrame())

# Initialize histogram:
self.binned_data = Histogram([Axis(time_bin_edges*u.s, label='Time'),
Axis(energy_bin_edges*u.keV, label='Em'),
Axis(phi_bin_edges*u.deg, label='Phi'),
psichi_axis],
sparse=True)
if psichi_binning == 'galactic':
psichi_axis = HealpixAxis(nside = self.nside,
scheme = self.scheme, coordsys = 'galactic', label='PsiChi')
coords = SkyCoord(l=self.cosi_dataset['Chi galactic']*u.deg,
b=self.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic')
if psichi_binning == 'local':
psichi_axis = HealpixAxis(nside = self.nside,
scheme = self.scheme, coordsys = SpacecraftFrame(), label='PsiChi')
coords = SkyCoord(lon=self.cosi_dataset['Chi local']*u.rad,
lat=((np.pi/2.0) - self.cosi_dataset['Psi local'])*u.rad,
frame = SpacecraftFrame())

# Initialize histogram:
self.binned_data = Histogram([Axis(time_bin_edges*u.s, label='Time'),
Axis(energy_bin_edges*u.keV, label='Em'),
Axis(phi_bin_edges*u.deg, label='Phi'),
psichi_axis],
sparse=True)

# Fill histogram:
self.binned_data.fill(self.cosi_dataset['TimeTags']*u.s, self.cosi_dataset['Energies']*u.keV, np.rad2deg(self.cosi_dataset['Phi'])*u.deg, coords)

# Fill histogram:
if event_range == None:
self.binned_data.fill(self.cosi_dataset['TimeTags']*u.s,
self.cosi_dataset['Energies']*u.keV,
np.rad2deg(self.cosi_dataset['Phi'])*u.deg,
coords)
if event_range != None:
low = int(event_range[0])
high = int(event_range[1])
self.binned_data.fill(self.cosi_dataset['TimeTags'][low:high]*u.s,
self.cosi_dataset['Energies'][low:high]*u.keV,
np.rad2deg(self.cosi_dataset['Phi'][low:high])*u.deg,
coords[low:high])

# Save binned data to hdf5 file:
if output_name != None:
self.binned_data.write('%s.hdf5' %output_name, overwrite=True)
Expand All @@ -141,27 +138,44 @@ def get_binned_data(self, unbinned_data=None, output_name=None, \
# Plot the binned data:
if make_binning_plots == True:
self.plot_binned_data()
if psichi_old == True:
self.plot_psichi_map()
if psichi_old == False:
self.plot_psichi_map_new()
self.plot_psichi_map()

return

def load_binned_data_from_hdf5(self,binned_data):

"""Loads binned histogram from hdf5 file."""
"""Loads binned histogram from hdf5 file.
Parameters
----------
binned_data : str
Name of binned data file to load.
Returns
-------
binned_data : histpy:Histogram
Data is binned in four axes: time, measured energy,
Compton scattering angle (phi), and scattering direction
(PsiChi).
Note
----
This method sets the instance attribute, binned_data,
but it does not explicitly return it.
"""

self.binned_data = Histogram.open(binned_data)

return

def get_binning_info(self, binned_data=None):

"""
Get binning information from Histpy histogram.
Optional input:
binned_data: Histogram object (hdf5).
"""Get binning information from Histpy histogram.
Parameters
----------
binned_data : str
Name of binned data hdf5 file to use.
"""

# Option to read in binned data from hdf5 file:
Expand Down Expand Up @@ -205,10 +219,12 @@ def get_binning_info(self, binned_data=None):

def plot_binned_data(self, binned_data=None):

"""
Plot binnned data for all axes.
Optional input:
binned_data: Histogram object (hdf5).
"""Plot binnned data for all axes.
Parameters
----------
binned_data : histpy:Histogram, optional
Name of binned histogram to use.
"""

# Option to read in binned data from hdf5 file:
Expand Down Expand Up @@ -240,7 +256,7 @@ def plot_binned_data(self, binned_data=None):

return

def plot_psichi_map_new(self):
def plot_psichi_map(self):

"""
Plot psichi healpix map.
Expand All @@ -257,50 +273,24 @@ def plot_psichi_map_new(self):

return

def plot_psichi_map(self, healpix_map=None):

"""
Plot psichi healpix map.
Optional input:
healpix_map: Healpix map object.
"""

# Option to read in healpix map from fits file.
if healpix_map:
self.m = HealpixMap(nside = self.nside, scheme = self.scheme, dtype = int).read_map(healpix_map)

# Plot PsiChi mhealpy default:
plot,ax = self.m.plot()
ax.get_figure().set_figwidth(4)
ax.get_figure().set_figheight(3)
plt.title("PsiChi Binning (counts)")
plt.savefig("psichi_default.png",bbox_inches='tight')
plt.show()
plt.close()

# Plot PsiChi mhealpy rotated:
plot,ax = self.m.plot(ax = 'orthview', ax_kw = {'rot':[0,90,0]})
ax.get_figure().set_figwidth(3)
ax.get_figure().set_figheight(4)
plt.title("PsiChi Binning (counts)")
plt.savefig("psichi_rotated.png",bbox_inches='tight')
plt.show()
plt.close()

return

def plot_psichi_map_slices(self, Em, phi, output, binned_data=None, coords=None):

"""
Plot psichi map in slices of Em and phi.
Inputs:
Em: Bin of energy slice.
phi: Bin of phi slice.
output: Name of output plot.
binned_data (optional): Histogram object (hdf5).
coords (optional; list): Coordinates of source position.
- Galactic longitude and latidude for Galactic coordinates.
- Azimuthal and latitude for local coordinates.
"""Plot psichi map in slices of Em and phi.
Parameters
----------
Em : int
Bin of energy slice.
phi : int
Bin of phi slice.
output : str
Prefix of output plot.
binned_data : histpy:Histogram, optional
Name of binned histogram to use.
coords : list, optional
Coordinates of source position. Galactic longitude and
latidude for Galactic coordinates. Azimuthal and latitude
for local coordinates.
"""

# Option to read in binned data from hdf5 file:
Expand Down Expand Up @@ -337,13 +327,16 @@ def plot_psichi_map_slices(self, Em, phi, output, binned_data=None, coords=None)

def get_raw_spectrum(self, binned_data=None, time_rate=False, output_name=None):

"""
Calculates raw spectrum of binned data, plots, and writes to file.
"""Calculates raw spectrum of binned data, plots, and writes to file.
Inputs (all optional):
binned_data: Binnned data file (hdf5).
output_name: Prefix of output files.
time_rate: If True calculates ct/keV/s. The defualt is ct/keV.
Parameters
----------
binned_data : str, optional
Name of binnned hdf5 data file.
output_name : str, optional
Prefix of output files. Writes both pdf and dat file.
time_rate : bool, optional
If True, calculates ct/keV/s. The defualt is ct/keV.
"""

# Make print statement:
Expand Down Expand Up @@ -381,11 +374,14 @@ def get_raw_spectrum(self, binned_data=None, time_rate=False, output_name=None):

def get_raw_lightcurve(self, binned_data=None, output_name=None):

"""
Calculates raw lightcurve of binned data, plots, and writes data to file.
"""Calculates raw lightcurve of binned data, plots, and writes data to file.
Inputs (optional):
binned_data: Binnned data file (hdf5).
Parameters
----------
binned_data : str, optional
Name of binnned hdf5 data file to use.
output_name : str, optional
Prefix of output files. Writes both pdf and dat file.
"""

# Make print statement:
Expand Down
33 changes: 17 additions & 16 deletions cosipy/data_io/DataIO.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,17 +7,24 @@
from cosipy.config import Configurator

class DataIO:

def __init__(self, input_yaml, pw=None):

#print(argv)
"""Main user inputs are specified in inputs.yaml file."""
#parser = argparse.ArgumentParser()
#parser.add_argument('-pw', '--pw', help = 'username')
#args = parser.parse_args(argv)
#self.pw = args.pw
#print(self.pw)

"""Handles main inputs and outputs."""

def __init__(self, input_yaml, pw=None):

"""
Parameters
----------
input_yaml : yaml file
Input yaml file containing all needed inputs for analysis.
Notes
-----
The main inputs must currently be passed with the yaml file.
The parameter configurator will be updated in the near future,
to allow for much more flexibility.
"""

# Load housekeeping inputs:
housekeeping_path_prefix = os.path.split(cosipy.data_io.__file__)[0]
housekeeping_dir = os.path.join(housekeeping_path_prefix,"housekeeping_files")
Expand All @@ -36,9 +43,3 @@ def __init__(self, input_yaml, pw=None):
self.scheme = inputs['scheme'] # Healpix binning of psi chi local
self.tmin = inputs['tmin'] # Min time in seconds.
self.tmax = inputs['tmax'] # Max time in seconds.

def parse_args(self, argv=None):
parser = argparse.ArgumentParser()
parser.add_argument('-pw', '--pw', help = 'username')
args = vars(parser.parse_args(argv))
print(args)
Loading

0 comments on commit d50f2fc

Please sign in to comment.