-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add polarization module with utility functions for polarization trans…
…formations - Added polarization module - Included util.py with functions for generating meshgrids, projections, and angle transformations - Created __init__.py to expose key functions from the util module
- Loading branch information
1 parent
d74b7cf
commit 3cff840
Showing
2 changed files
with
111 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
from .util import ( | ||
generate_meshgrid, | ||
orthographic, | ||
stereographic, | ||
transform_pa, | ||
transform_pa_sc_to_celestial, | ||
transform_pa_celestial_to_sc, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import numpy as np | ||
import astropy.units as u | ||
from astropy.coordinates import SkyCoord | ||
from scoords import Attitude, SpacecraftFrame | ||
|
||
# Generate theta and phi for meshgrid | ||
def generate_meshgrid(): | ||
theta = np.linspace(0, 0.5 * np.pi, 6) | ||
phi = np.linspace(-np.pi / 2, np.pi / 2, 13) | ||
theta, phi = np.meshgrid(theta, phi) | ||
|
||
x = np.sin(theta) * np.cos(phi) | ||
y = np.sin(theta) * np.sin(phi) | ||
z = np.cos(theta) | ||
|
||
return x, y, z | ||
|
||
# Orthographic projection function | ||
def orthographic(x, y, z, ref_vector): | ||
ref_x, ref_y, ref_z = ref_vector | ||
dot_product = x * ref_x + y * ref_y + z * ref_z | ||
px_x = ref_x - dot_product * x | ||
px_y = ref_y - dot_product * y | ||
px_z = ref_z - dot_product * z | ||
|
||
# Normalize the projection vector | ||
norm = np.sqrt(px_x**2 + px_y**2 + px_z**2) | ||
px_x /= norm | ||
px_y /= norm | ||
px_z /= norm | ||
|
||
# Compute the perpendicular vector | ||
py_x, py_y, py_z = np.cross([x, y, z], [px_x, px_y, px_z], axis=0) | ||
|
||
return (px_x, px_y, px_z), (py_x, py_y, py_z) | ||
|
||
# Stereographic projection function | ||
def stereographic(x, y, z, ref_vector): | ||
ref_x, ref_y, ref_z = ref_vector | ||
norm_ref = np.sqrt(ref_x**2 + ref_y**2 + ref_z**2) | ||
ref_x /= norm_ref | ||
ref_y /= norm_ref | ||
ref_z /= norm_ref | ||
|
||
denom = (z + 1) | ||
px_x = 1 - (x**2 - y**2) / denom**2 | ||
px_y = -2 * x * y / denom**2 | ||
px_z = -2 * x / denom | ||
|
||
norm = np.sqrt(px_x**2 + px_y**2 + px_z**2) | ||
px_x /= norm | ||
px_y /= norm | ||
px_z /= norm | ||
|
||
py_x, py_y, py_z = np.cross([x, y, z], [px_x, px_y, px_z], axis=0) | ||
return (px_x, px_y, px_z), (py_x, py_y, py_z) | ||
|
||
# Function to transform polarization angle between projections | ||
def transform_pa(pa_1, convention1, convention2, ref_vector, x, y, z): | ||
(px1_x, px1_y, px1_z), (py1_x, py1_y, py1_z) = convention1(x, y, z, ref_vector) | ||
|
||
cos_pa_1 = np.cos(pa_1) | ||
sin_pa_1 = np.sin(pa_1) | ||
|
||
pol_vec_x = px1_x * cos_pa_1 + py1_x * sin_pa_1 | ||
pol_vec_y = px1_y * cos_pa_1 + py1_y * sin_pa_1 | ||
pol_vec_z = px1_z * cos_pa_1 + py1_z * sin_pa_1 | ||
|
||
(px2_x, px2_y, px2_z), (py2_x, py2_y, py2_z) = convention2(x, y, z, ref_vector) | ||
|
||
a = pol_vec_x * px2_x + pol_vec_y * px2_y + pol_vec_z * px2_z | ||
b = pol_vec_x * py2_x + pol_vec_y * py2_y + pol_vec_z * py2_z | ||
|
||
pa_2 = np.arctan2(b, a) | ||
return pa_2 | ||
|
||
# Function to transform polarization angle from SC to celestial coordinates | ||
def transform_pa_sc_to_celestial(pa_sc, attitude): | ||
sc_coord = SkyCoord( | ||
lon=pa_sc * u.rad, lat=0 * u.rad, frame=SpacecraftFrame(attitude=attitude) | ||
) | ||
|
||
# Transform to Celestial coordinates | ||
celestial_coord = sc_coord.transform_to('icrs') | ||
|
||
# Extract the polarization angle (PA) in celestial coordinates | ||
pa_celestial = celestial_coord.ra | ||
|
||
return pa_celestial.rad # Return PA in radians | ||
|
||
# Function to transform polarization angle from celestial to SC coordinates | ||
def transform_pa_celestial_to_sc(pa_celestial, attitude): | ||
celestial_coord = SkyCoord( | ||
ra=pa_celestial * u.rad, dec=0 * u.rad, frame='icrs' | ||
) | ||
|
||
# Transform to SpacecraftFrame | ||
sc_coord = celestial_coord.transform_to(SpacecraftFrame(attitude=attitude)) | ||
|
||
# Extract the polarization angle (PA) in spacecraft coordinates | ||
pa_sc = sc_coord.lon | ||
|
||
return pa_sc.rad # Return PA in radians |