-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4914ab9
commit c954e4f
Showing
3 changed files
with
224 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import matplotlib.pyplot as plt | ||
import mplhep as hep | ||
import numpy as np | ||
from iminuit import Minuit | ||
from iminuit.cost import LeastSquares | ||
from jacobi import propagate | ||
|
||
# from scipy.special import erfc | ||
|
||
plt.style.use(hep.style.ROOT) | ||
|
||
|
||
def sqrt_law(x, a): | ||
return a * np.sqrt(x) | ||
|
||
|
||
if __name__ == "__main__": | ||
days = np.array([1, 5, 11, 18, 25]) | ||
edays = np.ones_like(days) * 0.5 | ||
|
||
time_array = np.linspace(0, 32, 300) | ||
|
||
z_index = np.array([1.23, 1.23, 1.24, 1.16, 1.14]) | ||
z_color = np.array([1.59, 2.09, 2.68, 3.32, 4.09]) | ||
|
||
ez_color = np.array([0.02, 0.04, 0.07, 0.11, 0.21]) | ||
|
||
z_index_mean = np.mean(z_index) | ||
z_index_std = np.sqrt((np.std(z_index)) ** 2 + (0.05 * z_index_mean) ** 2) | ||
|
||
fig, ax = plt.subplots(figsize=(7, 6)) | ||
plt.errorbar( | ||
days, | ||
z_color, | ||
yerr=ez_color, | ||
xerr=edays, | ||
fmt="o", | ||
color="black", | ||
ecolor="black", | ||
label="color depth", | ||
capsize=3, | ||
) | ||
ax.hlines( | ||
z_index_mean, | ||
-2, | ||
32, | ||
color="black", | ||
linestyles="dashed", | ||
label="index boundary", | ||
linewidth=2, | ||
) | ||
ax.fill_between( | ||
np.linspace(-2, 32, 100), | ||
z_index_mean - z_index_std, | ||
z_index_mean + z_index_std, | ||
alpha=0.2, | ||
color="black", | ||
) | ||
plt.xlabel("Days after irradiation") | ||
plt.ylabel("Annealing depth $z$ (mm)") | ||
plt.xlim(-2, 32) | ||
plt.ylim(0, 5) | ||
|
||
least_squares = LeastSquares(days, z_color - z_index, ez_color, sqrt_law) | ||
m = Minuit(least_squares, a=0.1) | ||
m.migrad() | ||
m.hesse() | ||
y_1, ycov = propagate(lambda p: sqrt_law(time_array, *p), m.values, m.covariance) | ||
y_1 += z_index_mean | ||
yerr_prop = np.diag(ycov) ** 0.5 | ||
ax.plot(time_array, y_1, label="fit", color="red", lw=2) | ||
ax.fill_between( | ||
time_array, y_1 - yerr_prop, y_1 + yerr_prop, facecolor="red", alpha=0.2 | ||
) | ||
|
||
# Print the fit results | ||
print("\nFit results:") | ||
print(f" chi2 / ndof = {m.fval:.1f} / {m.ndof:.0f} = {m.fmin.reduced_chi2:.1f}") | ||
for p, v, e in zip(m.parameters, m.values, m.errors): | ||
print(f"\t{p} = {v:.4f} ± {e:.4f}") | ||
print(f"\tD = {v**2:.4f} ± {2*v*e:.4f}") | ||
print() | ||
|
||
plt.tight_layout() | ||
plt.legend(loc="upper left") | ||
plt.savefig("plots/annealing_depth.pdf") | ||
# plt.show() |
Oops, something went wrong.