-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Improve Static FSM Compilation (#2215)
Implements the ideas from #2207. Apologies for the gigantic PR, there are a couple reasons why it is so big: 1) It represents a big change in the compiler 2) I didn't know if it was going to even be worth it to implement these changes to the compiler, so I implemented some improvements to the compilation process that complicated the code (but [improved](https://github.com/orgs/calyxir/discussions/2202#discussioncomment-10014608) results). There are some minor changes to `static_inline.rs` (in particular, inlining `static par` blocks is more complicated now because we can't merge always just merge all threads of a `static par` into the same group). There are some changes to `compile_static.rs`, but the main contribution of this PR is the file `static_tree.rs`. I'm still going to write some tests to make sure I'm getting all edge cases for this new tree-looking FSM compilation.
- Loading branch information
Showing
52 changed files
with
8,818 additions
and
6,806 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
use crate::passes::math_utilities::get_bit_width_from; | ||
use calyx_ir::{self as ir}; | ||
use calyx_ir::{build_assignments, Nothing}; | ||
use calyx_ir::{guard, structure}; | ||
use std::collections::HashMap; | ||
use std::rc::Rc; | ||
|
||
#[derive(Debug, Clone, Copy, Default)] | ||
// Define an FSMEncoding Enum | ||
pub enum FSMEncoding { | ||
#[default] | ||
Binary, | ||
OneHot, | ||
} | ||
|
||
#[derive(Debug)] | ||
/// Represents a static FSM (i.e., the actual register in hardware that counts) | ||
pub struct StaticFSM { | ||
/// The actual register cell | ||
fsm_cell: ir::RRC<ir::Cell>, | ||
/// Type of encoding (binary or one-hot) | ||
encoding: FSMEncoding, | ||
/// The fsm's bitwidth (this redundant information bc we have `cell`) | ||
/// but makes it easier if we easily have access to this. | ||
bitwidth: u64, | ||
/// Mapping of queries: (u64, u64) -> Port | ||
queries: HashMap<(u64, u64), ir::RRC<ir::Port>>, | ||
} | ||
impl StaticFSM { | ||
// Builds a static_fsm from: num_states and encoding type. | ||
pub fn from_basic_info( | ||
num_states: u64, | ||
encoding: FSMEncoding, | ||
builder: &mut ir::Builder, | ||
) -> Self { | ||
// Determine number of bits needed in the register. | ||
let fsm_size = match encoding { | ||
/* represent 0..latency */ | ||
FSMEncoding::Binary => get_bit_width_from(num_states + 1), | ||
FSMEncoding::OneHot => num_states, | ||
}; | ||
// OHE needs an initial value of 1. | ||
let register = match encoding { | ||
FSMEncoding::Binary => { | ||
builder.add_primitive("fsm", "std_reg", &[fsm_size]) | ||
} | ||
FSMEncoding::OneHot => { | ||
builder.add_primitive("fsm", "init_one_reg", &[fsm_size]) | ||
} | ||
}; | ||
|
||
StaticFSM { | ||
encoding, | ||
fsm_cell: register, | ||
bitwidth: fsm_size, | ||
queries: HashMap::new(), | ||
} | ||
} | ||
|
||
// Builds an incrementer, and returns the assignments and incrementer cell itself. | ||
// assignments are: | ||
// adder.left = fsm.out; adder.right = 1; | ||
// Returns tuple: (assignments, adder) | ||
pub fn build_incrementer( | ||
&self, | ||
builder: &mut ir::Builder, | ||
) -> (Vec<ir::Assignment<Nothing>>, ir::RRC<ir::Cell>) { | ||
let fsm_cell = Rc::clone(&self.fsm_cell); | ||
// For OHE, the "adder" can just be a shifter. | ||
// For OHE the first_state = 1 rather than 0. | ||
// Final state is encoded differently for OHE vs. Binary | ||
let adder = match self.encoding { | ||
FSMEncoding::Binary => { | ||
builder.add_primitive("adder", "std_add", &[self.bitwidth]) | ||
} | ||
FSMEncoding::OneHot => { | ||
builder.add_primitive("lsh", "std_lsh", &[self.bitwidth]) | ||
} | ||
}; | ||
let const_one = builder.add_constant(1, self.bitwidth); | ||
let incr_assigns = build_assignments!( | ||
builder; | ||
// increments the fsm | ||
adder["left"] = ? fsm_cell["out"]; | ||
adder["right"] = ? const_one["out"]; | ||
) | ||
.to_vec(); | ||
(incr_assigns, adder) | ||
} | ||
|
||
// Returns the assignments that conditionally increment the fsm, | ||
// based on guard. | ||
// The assignments are: | ||
// fsm.in = guard ? adder.out; | ||
// fsm.write_en = guard ? 1'd1; | ||
// Returns a vec of these assignments. | ||
pub fn conditional_increment( | ||
&self, | ||
guard: ir::Guard<Nothing>, | ||
adder: ir::RRC<ir::Cell>, | ||
builder: &mut ir::Builder, | ||
) -> Vec<ir::Assignment<Nothing>> { | ||
let fsm_cell = Rc::clone(&self.fsm_cell); | ||
let signal_on = builder.add_constant(1, 1); | ||
let my_assigns = build_assignments!( | ||
builder; | ||
// increments the fsm | ||
fsm_cell["in"] = guard ? adder["out"]; | ||
fsm_cell["write_en"] = guard ? signal_on["out"]; | ||
); | ||
my_assigns.to_vec() | ||
} | ||
|
||
// Returns the assignments that conditionally resets the fsm to 0, | ||
// but only if guard is true. | ||
// The assignments are: | ||
// fsm.in = guard ? 0; | ||
// fsm.write_en = guard ? 1'd1; | ||
// Returns a vec of these assignments. | ||
pub fn conditional_reset( | ||
&self, | ||
guard: ir::Guard<Nothing>, | ||
builder: &mut ir::Builder, | ||
) -> Vec<ir::Assignment<Nothing>> { | ||
let fsm_cell = Rc::clone(&self.fsm_cell); | ||
let signal_on = builder.add_constant(1, 1); | ||
let const_0 = match self.encoding { | ||
FSMEncoding::Binary => builder.add_constant(0, self.bitwidth), | ||
FSMEncoding::OneHot => builder.add_constant(1, self.bitwidth), | ||
}; | ||
let assigns = build_assignments!( | ||
builder; | ||
fsm_cell["in"] = guard ? const_0["out"]; | ||
fsm_cell["write_en"] = guard ? signal_on["out"]; | ||
); | ||
assigns.to_vec() | ||
} | ||
|
||
// Returns a guard that takes a (beg, end) `query`, and returns the equivalent | ||
// guard to `beg <= fsm.out < end`. | ||
pub fn query_between( | ||
&mut self, | ||
builder: &mut ir::Builder, | ||
query: (u64, u64), | ||
) -> Box<ir::Guard<Nothing>> { | ||
let (beg, end) = query; | ||
// Querying OHE is easy, since we already have `self.get_one_hot_query()` | ||
let fsm_cell = Rc::clone(&self.fsm_cell); | ||
if matches!(self.encoding, FSMEncoding::OneHot) { | ||
let g = self.get_one_hot_query(fsm_cell, (beg, end), builder); | ||
return Box::new(g); | ||
} | ||
|
||
if beg + 1 == end { | ||
// if beg + 1 == end then we only need to check if fsm == beg | ||
let interval_const = builder.add_constant(beg, self.bitwidth); | ||
let g = guard!(fsm_cell["out"] == interval_const["out"]); | ||
Box::new(g) | ||
} else if beg == 0 { | ||
// if beg == 0, then we only need to check if fsm < end | ||
let end_const = builder.add_constant(end, self.bitwidth); | ||
let lt: ir::Guard<Nothing> = | ||
guard!(fsm_cell["out"] < end_const["out"]); | ||
Box::new(lt) | ||
} else { | ||
// otherwise, check if fsm >= beg & fsm < end | ||
let beg_const = builder.add_constant(beg, self.bitwidth); | ||
let end_const = builder.add_constant(end, self.bitwidth); | ||
let beg_guard: ir::Guard<Nothing> = | ||
guard!(fsm_cell["out"] >= beg_const["out"]); | ||
let end_guard: ir::Guard<Nothing> = | ||
guard!(fsm_cell["out"] < end_const["out"]); | ||
Box::new(ir::Guard::And(Box::new(beg_guard), Box::new(end_guard))) | ||
} | ||
} | ||
|
||
// Given a one-hot query, it will return a guard corresponding to that query. | ||
// If it has already built the query (i.e., added the wires/continuous assigments), | ||
// it just uses the same port. | ||
// Otherwise it will build the query. | ||
fn get_one_hot_query( | ||
&mut self, | ||
fsm_cell: ir::RRC<ir::Cell>, | ||
(lb, ub): (u64, u64), | ||
builder: &mut ir::Builder, | ||
) -> ir::Guard<Nothing> { | ||
match self.queries.get(&(lb, ub)) { | ||
None => { | ||
let port = Self::build_one_hot_query( | ||
Rc::clone(&fsm_cell), | ||
self.bitwidth, | ||
(lb, ub), | ||
builder, | ||
); | ||
self.queries.insert((lb, ub), Rc::clone(&port)); | ||
ir::Guard::port(port) | ||
} | ||
Some(port) => ir::Guard::port(Rc::clone(port)), | ||
} | ||
} | ||
|
||
// Given a (lb, ub) query, and an fsm (and for convenience, a bitwidth), | ||
// Returns a `port`: port is a `wire.out`, where `wire` holds | ||
// whether or not the query is true, i.e., whether the FSM really is | ||
// between [lb, ub). | ||
fn build_one_hot_query( | ||
fsm_cell: ir::RRC<ir::Cell>, | ||
fsm_bitwidth: u64, | ||
(lb, ub): (u64, u64), | ||
builder: &mut ir::Builder, | ||
) -> ir::RRC<ir::Port> { | ||
// The wire that holds the query | ||
let formatted_name = format!("bw_{}_{}", lb, ub); | ||
let wire: ir::RRC<ir::Cell> = | ||
builder.add_primitive(formatted_name, "std_wire", &[1]); | ||
let wire_out = wire.borrow().get("out"); | ||
|
||
// Continuous assignments to check the FSM | ||
let assigns = { | ||
let in_width = fsm_bitwidth; | ||
// Since 00...00 is the initial state, we need to check lb-1. | ||
let start_index = lb; | ||
// Since verilog slices are inclusive. | ||
let end_index = ub - 1; | ||
let out_width = ub - lb; // == (end_index - start_index + 1) | ||
structure!(builder; | ||
let slicer = prim std_bit_slice(in_width, start_index, end_index, out_width); | ||
let const_slice_0 = constant(0, out_width); | ||
let signal_on = constant(1,1); | ||
); | ||
let slicer_neq_0 = guard!(slicer["out"] != const_slice_0["out"]); | ||
// Extend the continuous assignmments to include this particular query for FSM state; | ||
let my_assigns = build_assignments!(builder; | ||
slicer["in"] = ? fsm_cell["out"]; | ||
wire["in"] = slicer_neq_0 ? signal_on["out"]; | ||
); | ||
my_assigns.to_vec() | ||
}; | ||
builder.add_continuous_assignments(assigns); | ||
wire_out | ||
} | ||
|
||
// Return a unique id (i.e., get_unique_id for each FSM in the same component | ||
// will be different). | ||
pub fn get_unique_id(&self) -> ir::Id { | ||
self.fsm_cell.borrow().name() | ||
} | ||
|
||
// Return the bitwidth of an FSM object | ||
pub fn get_bitwidth(&self) -> u64 { | ||
self.bitwidth | ||
} | ||
} |
Oops, something went wrong.