-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #16 from byuflowlab/test-vortexring
Vortex ring example simulation
- Loading branch information
Showing
3 changed files
with
330 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,291 @@ | ||
#=############################################################################## | ||
# DESCRIPTION | ||
Vortex ring simulation. | ||
This module contains multiple functions that have been copied/pasted | ||
from FLOWVPM by the author. See | ||
https://github.com/byuflowlab/FLOWVPM.jl/tree/master/examples/vortexrings | ||
# AUTHORSHIP | ||
* Author : Eduardo J. Alvarez | ||
* Email : [email protected] | ||
* Created : Nov 9th, 2024 | ||
=############################################################################### | ||
|
||
|
||
import Elliptic | ||
import Roots | ||
import Cubature | ||
import LinearAlgebra: I, norm, cross | ||
|
||
modulepath = splitdir(@__FILE__)[1] # Path to this module | ||
|
||
# Load FastMultipole `vortex.jl` module | ||
using StaticArrays | ||
include(joinpath(modulepath, "..", "test", "vortex.jl")) | ||
|
||
|
||
|
||
|
||
# -------------- USEFUL FUNCTIONS ---------------------------------------------- | ||
"Number of particles used to discretized a ring" | ||
number_particles(Nphi, nc; extra_nc=0) = Int( Nphi * ( 1 + 8*sum(1:(nc+extra_nc)) ) ) | ||
|
||
"Analytic self-induced velocity of an inviscid ring" | ||
Uring(circulation, R, Rcross, beta) = circulation/(4*pi*R) * ( log(8*R/Rcross) - beta ) | ||
|
||
""" | ||
`addvortexring(pfield, circulation, R, AR, Rcross, Nphi, nc, sigma; | ||
extra_nc=0, O=zeros(3), Oaxis=eye(3))` | ||
Adds a vortex ring to the particle field `pfield`. The ring is discretized as | ||
described in Winckelmans' 1989 doctoral thesis (Topics in Vortex Methods...), | ||
where the ring is an ellipse of equivalent radius `R=sqrt(a*b)`, aspect ratio | ||
`AR=a/b`, and cross-sectional radius `Rcross`, where `a` and `b` are the | ||
semi-major and semi-minor axes, respectively. Hence, `AR=1` defines a circle of | ||
radius `R`. | ||
The ring is discretized with `Nphi` cross section evenly spaced and the | ||
thickness of the toroid is discretized with `nc` layers, using particles with | ||
smoothing radius `sigma`. Here, `nc=0` means that the ring is represented only | ||
with particles centered along the centerline, and `nc>0` is the number of layers | ||
around the centerline extending out from 0 to `Rcross`. | ||
Additional layers of empty particles (particle with no strength) beyond `Rcross` | ||
can be added with the optional argument `extra_nc`. | ||
The ring is placed in space at the position `O` and orientation `Oaxis`, | ||
where `Oaxis[:, 1]` is the major axis, `Oaxis[:, 2]` is the minor axis, and | ||
`Oaxis[:, 3]` is the line of symmetry. | ||
""" | ||
function vortexring(circulation::Real, | ||
R::Real, AR::Real, Rcross::Real, | ||
Nphi::Int, nc::Int, sigma::Real; extra_nc::Int=0, | ||
O::Vector{<:Real}=zeros(3), Oaxis=I, | ||
verbose=true, v_lvl=0 | ||
) | ||
|
||
maxnp = number_particles(Nphi, nc; extra_nc=extra_nc) | ||
pfield = zeros(7, maxnp) | ||
|
||
# ERROR CASE | ||
if AR < 1 | ||
error("Invalid aspect ratio AR < 1 (AR = $(AR))") | ||
end | ||
|
||
a = R*sqrt(AR) # Semi-major axis | ||
b = R/sqrt(AR) # Semi-minor axis | ||
|
||
fun_S(phi, a, b) = a * Elliptic.E(phi, 1-(b/a)^2) # Arc length from 0 to a given angle | ||
Stot = fun_S(2*pi, a, b) # Total perimeter length of centerline | ||
|
||
# Non-dimensional arc length from 0 to a given value <=1 | ||
fun_s(phi, a, b) = fun_S(phi, a, b)/fun_S(2*pi, a, b) | ||
# Angle associated to a given non-dimensional arc length | ||
fun_phi(s, a, b) = abs(s) <= eps() ? 0 : | ||
abs(s-1) <= eps() ? 2*pi : | ||
Roots.fzero( phi -> fun_s(phi, a, b) - s, (0, 2*pi-eps()), atol=1e-16, rtol=1e-16) | ||
|
||
# Length of a given filament in a | ||
# cross section cell | ||
function fun_length(r, tht, a, b, phi1, phi2) | ||
S1 = fun_S(phi1, a + r*cos(tht), b + r*cos(tht)) | ||
S2 = fun_S(phi2, a + r*cos(tht), b + r*cos(tht)) | ||
|
||
return S2-S1 | ||
end | ||
# Function to be integrated to calculate | ||
# each cell's volume | ||
function fun_dvol(r, args...) | ||
return r * fun_length(r, args...) | ||
end | ||
# Integrate cell volume | ||
function fun_vol(dvol_wrap, r1, tht1, r2, tht2) | ||
(val, err) = Cubature.hcubature(dvol_wrap, [r1, tht1], [r2, tht2]; | ||
reltol=1e-8, abstol=0, maxevals=1000) | ||
return val | ||
end | ||
|
||
invOaxis = inv(Oaxis) # Add particles in the global coordinate system | ||
np = 0 | ||
function addparticle(pfield, X, Gamma, sigma, vol, circulation) | ||
X_global = Oaxis*X + O | ||
Gamma_global = Oaxis*Gamma | ||
|
||
np += 1 | ||
pfield[1:3, np] .= X_global | ||
pfield[4, np] = sigma | ||
pfield[5:7, np] .= Gamma_global | ||
|
||
end | ||
|
||
rl = Rcross/(2*nc + 1) # Radial spacing between cross-section layers | ||
dS = Stot/Nphi # Perimeter spacing between cross sections | ||
ds = dS/Stot # Non-dimensional perimeter spacing | ||
|
||
omega = circulation / (pi*Rcross^2) # Average vorticity | ||
|
||
org_np = 0 | ||
|
||
# Discretization of torus into cross sections | ||
for N in 0:Nphi-1 | ||
|
||
# Non-dimensional arc-length position of cross section along centerline | ||
sc1 = ds*N # Lower bound | ||
sc2 = ds*(N+1) # Upper bound | ||
sc = (sc1 + sc2)/2 # Center | ||
|
||
# Angle of cross section along centerline | ||
phi1 = fun_phi(sc1, a, b) # Lower bound | ||
phi2 = fun_phi(sc2, a, b) # Upper bound | ||
phic = fun_phi(sc, a, b) # Center | ||
|
||
Xc = [a*sin(phic), b*cos(phic), 0] # Center of the cross section | ||
T = [a*cos(phic), -b*sin(phic), 0] # Unitary tangent of this cross section | ||
T ./= norm(T) | ||
T .*= -1 # Flip to make +circulation travel +Z | ||
# Local coordinate system of section | ||
Naxis = hcat(T, cross([0,0,1], T), [0,0,1]) | ||
|
||
# Volume of each cell in the cross section | ||
dvol_wrap(X) = fun_dvol(X[1], X[2], a, b, phi1, phi2) | ||
|
||
|
||
# Discretization of cross section into layers | ||
for n in 0:nc+extra_nc | ||
|
||
if n==0 # Particle in the center | ||
|
||
r1, r2 = 0, rl # Lower and upper radius | ||
tht1, tht2 = 0, 2*pi # Left and right angle | ||
vol = fun_vol(dvol_wrap, r1, tht1, r2, tht2) # Volume | ||
X = Xc # Position | ||
Gamma = omega*vol*T # Vortex strength | ||
# Filament length | ||
length = fun_length(0, 0, a, b, phi1, phi2) | ||
# Circulation | ||
crcltn = norm(Gamma) / length | ||
|
||
addparticle(pfield, X, Gamma, sigma, vol, crcltn) | ||
|
||
else # Layers | ||
|
||
rc = (1 + 12*n^2)/(6*n)*rl # Center radius | ||
r1 = (2*n-1)*rl # Lower radius | ||
r2 = (2*n+1)*rl # Upper radius | ||
ncells = 8*n # Number of cells | ||
deltatheta = 2*pi/ncells # Angle of cells | ||
|
||
# Discretize layer into cells around the circumference | ||
for j in 0:(ncells-1) | ||
|
||
tht1 = deltatheta*j # Left angle | ||
tht2 = deltatheta*(j+1) # Right angle | ||
thtc = (tht1 + tht2)/2 # Center angle | ||
vol = fun_vol(dvol_wrap, r1, tht1, r2, tht2) # Volume | ||
# Position | ||
X = Xc + Naxis*[0, rc*cos(thtc), rc*sin(thtc)] | ||
|
||
# Vortex strength | ||
if n<=nc # Ring particles | ||
Gamma = omega*vol*T | ||
else # Particles for viscous diffusion | ||
Gamma = eps()*T | ||
end | ||
# Filament length | ||
length = fun_length(rc, thtc, a, b, phi1, phi2) | ||
# Circulation | ||
crcltn = norm(Gamma) / length | ||
|
||
|
||
addparticle(pfield, X, Gamma, sigma, vol, crcltn) | ||
end | ||
|
||
end | ||
|
||
end | ||
|
||
end | ||
|
||
if verbose | ||
println("\t"^(v_lvl)*"Number of particles: $(np - org_np)") | ||
end | ||
|
||
return pfield | ||
end | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# -------------- SIMULATION PARAMETERS ----------------------------------------- | ||
nsteps = 1000 # Number of time steps | ||
Rtot = 2.0 # (m) run simulation for equivalent | ||
# time to this many radii | ||
|
||
nrings = 1 # Number of rings | ||
nc = 1 # Number of toroidal layers of discretization | ||
# nc = 0 | ||
dZ = 0.1 # (m) spacing between rings | ||
circulations = 1.0*ones(nrings) # (m^2/s) circulation of each ring | ||
Rs = 1.0*ones(nrings) # (m) radius of each ring | ||
ARs = 1.0*ones(nrings) # Aspect ratio AR = a/r of each ring | ||
Rcrosss = 0.15*Rs # (m) cross-sectional radii | ||
sigmas = Rcrosss # Particle smoothing of each radius | ||
Nphis = 100*ones(Int, nrings) # Number of cross sections per ring | ||
ncs = nc*ones(Int, nrings) # Number layers per cross section | ||
extra_ncs = 0*ones(Int, nrings) # Number of extra layers per cross section | ||
Os = [[0, 0, dZ*(ri-1)] for ri in 1:nrings] # Position of each ring | ||
Oaxiss = [I for ri in 1:nrings] # Orientation of each ring | ||
nref = 1 # Reference ring | ||
|
||
beta = 0.5 # Parameter for theoretical velocity | ||
faux = 0.25 # Shrinks the discretized core by this factor | ||
|
||
pfields = [] | ||
|
||
for ringi in 1:nrings | ||
pfield = vortexring(circulations[ringi], | ||
Rs[ringi], ARs[ringi], Rcrosss[ringi], | ||
Nphis[ringi], ncs[ringi], sigmas[ringi]; extra_nc=extra_ncs[ringi], | ||
O=Os[ringi], Oaxis=Oaxiss[ringi], | ||
verbose=true, v_lvl=0 | ||
) | ||
push!(pfields, pfield) | ||
end | ||
|
||
pfield = hcat(pfields...) | ||
|
||
vortexparticles = VortexParticles(pfield); | ||
|
||
# save_vtk("vortexring-000", vortexparticles) | ||
|
||
|
||
|
||
# -------------- RUN SIMULATION ------------------------------------------------ | ||
Uref = Uring(circulations[nref], Rs[nref], Rcrosss[nref], beta) # (m/s) reference velocity | ||
dt = (Rtot/Uref) / nsteps # (s) time step | ||
|
||
# Create folder to save simulation | ||
savepath = "example-vortexring" | ||
|
||
if isdir(savepath) | ||
rm(savepath, recursive=true) | ||
end | ||
mkpath(savepath) | ||
|
||
convect!(vortexparticles, nsteps; | ||
# integration options | ||
integrate=Euler(dt), | ||
# fmm options | ||
fmm_p=4, fmm_ncrit=50, fmm_multipole_threshold=0.5, | ||
# fmm_p=43, fmm_ncrit=50, fmm_multipole_threshold=0.5, | ||
direct=false, | ||
# direct=true, | ||
# save options | ||
save=true, filename=joinpath(savepath, "vortexring"), compress=false, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.