Skip to content

Commit

Permalink
Merge pull request #804 from borglab/restore4
Browse files Browse the repository at this point in the history
Revert the reverted commit: "Revert "Merge branch 'master' of github.com:borglab/gtsfm""
  • Loading branch information
akshay-krishnan authored May 25, 2024
2 parents 7dd869a + 2d082a9 commit 53aa1b2
Show file tree
Hide file tree
Showing 11 changed files with 544 additions and 413 deletions.
37 changes: 24 additions & 13 deletions gtsfm/averaging/rotation/rotation_averaging_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from typing import Dict, List, Optional, Tuple

import dask
import numpy as np
from dask.delayed import Delayed
from gtsam import Pose3, Rot3

Expand Down Expand Up @@ -42,13 +43,15 @@ def run_rotation_averaging(
num_images: int,
i2Ri1_dict: Dict[Tuple[int, int], Optional[Rot3]],
i1Ti2_priors: Dict[Tuple[int, int], PosePrior],
v_corr_idxs: Dict[Tuple[int, int], np.ndarray],
) -> List[Optional[Rot3]]:
"""Run the rotation averaging.
Args:
num_images: number of poses.
i2Ri1_dict: relative rotations as dictionary (i1, i2): i2Ri1.
i1Ti2_priors: priors on relative poses as dictionary(i1, i2): PosePrior on i1Ti2.
num_images: Number of poses.
i2Ri1_dict: Relative rotations as dictionary (i1, i2): i2Ri1.
i1Ti2_priors: Priors on relative poses as dictionary(i1, i2): PosePrior on i1Ti2.
v_corr_idxs: Dict mapping image pair indices (i1, i2) to indices of verified correspondences.
Returns:
Global rotations for each camera pose, i.e. wRi, as a list. The number of entries in the list is
Expand All @@ -61,6 +64,7 @@ def _run_rotation_averaging_base(
num_images: int,
i2Ri1_dict: Dict[Tuple[int, int], Optional[Rot3]],
i1Ti2_priors: Dict[Tuple[int, int], PosePrior],
v_corr_idxs: Dict[Tuple[int, int], np.ndarray],
wTi_gt: List[Optional[Pose3]],
) -> Tuple[List[Optional[Rot3]], GtsfmMetricsGroup]:
"""Runs rotation averaging and computes metrics.
Expand All @@ -69,6 +73,7 @@ def _run_rotation_averaging_base(
num_images: Number of poses.
i2Ri1_dict: Relative rotations as dictionary (i1, i2): i2Ri1.
i1Ti2_priors: Priors on relative poses as dictionary(i1, i2): PosePrior on i1Ti2.
v_corr_idxs: Dict mapping image pair indices (i1, i2) to indices of verified correspondences.
wTi_gt: Ground truth global rotations to compare against.
Returns:
Expand All @@ -78,7 +83,7 @@ def _run_rotation_averaging_base(
Metrics on global rotations.
"""
start_time = time.time()
wRis = self.run_rotation_averaging(num_images, i2Ri1_dict, i1Ti2_priors)
wRis = self.run_rotation_averaging(num_images, i2Ri1_dict, i1Ti2_priors, v_corr_idxs)
run_time = time.time() - start_time

metrics = self.evaluate(wRis, wTi_gt)
Expand All @@ -93,11 +98,11 @@ def evaluate(self, wRi_computed: List[Optional[Rot3]], wTi_gt: List[Optional[Pos
wRi_computed: List of global rotations computed.
wTi_gt: Ground truth global rotations to compare against.
Raises:
ValueError: If the length of the computed and GT list differ.
Returns:
Metrics on global rotations.
Raises:
ValueError: If the length of the computed and GT list differ.
"""
wRi_gt = [wTi.rotation() if wTi is not None else None for wTi in wTi_gt]

Expand All @@ -116,22 +121,28 @@ def create_computation_graph(
num_images: int,
i2Ri1_graph: Delayed,
i1Ti2_priors: Dict[Tuple[int, int], PosePrior],
v_corr_idxs: Dict[Tuple[int, int], np.ndarray],
gt_wTi_list: List[Optional[Pose3]],
) -> Tuple[Delayed, Delayed]:
"""Create the computation graph for performing rotation averaging.
Args:
num_images: number of poses.
i2Ri1_graph: dictionary of relative rotations as a delayed task.
i1Ti2_priors: priors on relative poses as (i1, i2): PosePrior on i1Ti2.
gt_wTi_list: ground truth poses, to be used for evaluation.
num_images: Number of poses.
i2Ri1_graph: Dictionary of relative rotations as a delayed task.
i1Ti2_priors: Priors on relative poses as (i1, i2): PosePrior on i1Ti2.
v_corr_idxs: Dict mapping image pair indices (i1, i2) to indices of verified correspondences.
gt_wTi_list: Ground truth poses, to be used for evaluation.
Returns:
global rotations wrapped using dask.delayed.
Global rotations wrapped using dask.delayed.
"""

wRis, metrics = dask.delayed(self._run_rotation_averaging_base, nout=2)(
num_images, i2Ri1_dict=i2Ri1_graph, i1Ti2_priors=i1Ti2_priors, wTi_gt=gt_wTi_list
num_images,
i2Ri1_dict=i2Ri1_graph,
i1Ti2_priors=i1Ti2_priors,
v_corr_idxs=v_corr_idxs,
wTi_gt=gt_wTi_list,
)

return wRis, metrics
100 changes: 64 additions & 36 deletions gtsfm/averaging/rotation/shonan.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,7 @@
import gtsam
import numpy as np
from gtsam import (
BetweenFactorPose3,
BetweenFactorPose3s,
LevenbergMarquardtParams,
Pose3,
Rot3,
ShonanAveraging3,
ShonanAveragingParameters3,
Expand All @@ -29,6 +26,7 @@
from gtsfm.averaging.rotation.rotation_averaging_base import RotationAveragingBase
from gtsfm.common.pose_prior import PosePrior

ROT3_DOF = 3
POSE3_DOF = 6

logger = logger_utils.get_logger()
Expand All @@ -39,18 +37,23 @@
class ShonanRotationAveraging(RotationAveragingBase):
"""Performs Shonan rotation averaging."""

def __init__(self, two_view_rotation_sigma: float = _DEFAULT_TWO_VIEW_ROTATION_SIGMA) -> None:
def __init__(
self, two_view_rotation_sigma: float = _DEFAULT_TWO_VIEW_ROTATION_SIGMA, weight_by_inliers: bool = True
) -> None:
"""Initializes module.
Note: `p_min` and `p_max` describe the minimum and maximum relaxation rank.
Args:
two_view_rotation_sigma: Covariance to use (lower values -> more strictly adhere to input measurements).
weight_by_inliers: Whether to weight pairwise costs according to an uncertainty equal to the inverse number
of inlier correspondences per edge.
"""
super().__init__()
self._two_view_rotation_sigma = two_view_rotation_sigma
self._p_min = 3
self._p_max = 64
self._weight_by_inliers = weight_by_inliers

def __get_shonan_params(self) -> ShonanAveragingParameters3:
lm_params = LevenbergMarquardtParams.CeresDefaults()
Expand All @@ -59,30 +62,34 @@ def __get_shonan_params(self) -> ShonanAveragingParameters3:
shonan_params.setCertifyOptimality(True)
return shonan_params

def __between_factors_from_2view_relative_rotations(
self, i2Ri1_dict: Dict[Tuple[int, int], Rot3], old_to_new_idxs: Dict[int, int]
) -> BetweenFactorPose3s:
def __measurements_from_2view_relative_rotations(
self,
i2Ri1_dict: Dict[Tuple[int, int], Rot3],
num_correspondences_dict: Dict[Tuple[int, int], int],
) -> gtsam.BinaryMeasurementsRot3:
"""Create between factors from relative rotations computed by the 2-view estimator."""
# TODO: how to weight the noise model on relative rotations compared to priors?
noise_model = gtsam.noiseModel.Isotropic.Sigma(POSE3_DOF, self._two_view_rotation_sigma)

between_factors = BetweenFactorPose3s()
# Default noise model if `self._weight_by_inliers` is False, or zero correspondences on edge.
noise_model = gtsam.noiseModel.Isotropic.Sigma(ROT3_DOF, self._two_view_rotation_sigma)

measurements = gtsam.BinaryMeasurementsRot3()
for (i1, i2), i2Ri1 in i2Ri1_dict.items():
if i2Ri1 is not None:
if i2Ri1 is None:
continue
if self._weight_by_inliers and num_correspondences_dict[(i1, i2)] > 0:
# ignore translation during rotation averaging
i2Ti1 = Pose3(i2Ri1, np.zeros(3))
i2_ = old_to_new_idxs[i2]
i1_ = old_to_new_idxs[i1]
between_factors.append(BetweenFactorPose3(i2_, i1_, i2Ti1, noise_model))
noise_model = gtsam.noiseModel.Isotropic.Sigma(ROT3_DOF, 1 / num_correspondences_dict[(i1, i2)])

measurements.append(gtsam.BinaryMeasurementRot3(i2, i1, i2Ri1, noise_model))

return between_factors
return measurements

def _between_factors_from_pose_priors(
def _measurements_from_pose_priors(
self, i1Ti2_priors: Dict[Tuple[int, int], PosePrior], old_to_new_idxs: Dict[int, int]
) -> BetweenFactorPose3s:
) -> gtsam.BinaryMeasurementsRot3:
"""Create between factors from the priors on relative poses."""
between_factors = BetweenFactorPose3s()
measurements = gtsam.BinaryMeasurementsRot3()

def get_isotropic_noise_model_sigma(covariance: np.ndarray) -> float:
"""Get the sigma to be used for the isotropic noise model.
Expand All @@ -95,13 +102,13 @@ def get_isotropic_noise_model_sigma(covariance: np.ndarray) -> float:
i1_ = old_to_new_idxs[i1]
i2_ = old_to_new_idxs[i2]
noise_model_sigma = get_isotropic_noise_model_sigma(i1Ti2_prior.covariance)
noise_model = gtsam.noiseModel.Isotropic.Sigma(POSE3_DOF, noise_model_sigma)
between_factors.append(BetweenFactorPose3(i1_, i2_, i1Ti2_prior.value, noise_model))
noise_model = gtsam.noiseModel.Isotropic.Sigma(ROT3_DOF, noise_model_sigma)
measurements.append(gtsam.BinaryMeasurementRot3(i1_, i2_, i1Ti2_prior.value.rotation(), noise_model))

return between_factors
return measurements

def _run_with_consecutive_ordering(
self, num_connected_nodes: int, between_factors: BetweenFactorPose3s
self, num_connected_nodes: int, measurements: gtsam.BinaryMeasurementsRot3
) -> List[Optional[Rot3]]:
"""Run the rotation averaging on a connected graph w/ N keys ordered consecutively [0,...,N-1].
Expand All @@ -112,7 +119,7 @@ def _run_with_consecutive_ordering(
Args:
num_connected_nodes: Number of unique connected nodes (i.e. images) in the graph
(<= the number of images in the dataset)
between_factors: BetweenFactorPose3s created from relative rotations from 2-view estimator and the priors.
measurements: BinaryMeasurementsRot3 created from relative rotations from 2-view estimator and the priors.
Returns:
Global rotations for each **CONNECTED** camera pose, i.e. wRi, as a list. The number of entries in
Expand All @@ -122,10 +129,10 @@ def _run_with_consecutive_ordering(

logger.info(
"Running Shonan with %d constraints on %d nodes",
len(between_factors),
len(measurements),
num_connected_nodes,
)
shonan = ShonanAveraging3(between_factors, self.__get_shonan_params())
shonan = ShonanAveraging3(measurements, self.__get_shonan_params())

initial = shonan.initializeRandomly()
logger.info("Initial cost: %.5f", shonan.cost(initial))
Expand Down Expand Up @@ -159,6 +166,7 @@ def run_rotation_averaging(
num_images: int,
i2Ri1_dict: Dict[Tuple[int, int], Optional[Rot3]],
i1Ti2_priors: Dict[Tuple[int, int], PosePrior],
v_corr_idxs: Dict[Tuple[int, int], np.ndarray],
) -> List[Optional[Rot3]]:
"""Run the rotation averaging on a connected graph with arbitrary keys, where each key is a image/pose index.
Expand All @@ -170,6 +178,7 @@ def run_rotation_averaging(
num_images: Number of images. Since we have one pose per image, it is also the number of poses.
i2Ri1_dict: Relative rotations for each image pair-edge as dictionary (i1, i2): i2Ri1.
i1Ti2_priors: Priors on relative poses.
v_corr_idxs: Dict mapping image pair indices (i1, i2) to indices of verified correspondences.
Returns:
Global rotations for each camera pose, i.e. wRi, as a list. The number of entries in the list is
Expand All @@ -183,17 +192,36 @@ def run_rotation_averaging(
return wRi_list

nodes_with_edges = sorted(list(self._nodes_with_edges(i2Ri1_dict, i1Ti2_priors)))
old_to_new_idxes = {old_idx: i for i, old_idx in enumerate(nodes_with_edges)}

between_factors: BetweenFactorPose3s = self.__between_factors_from_2view_relative_rotations(
i2Ri1_dict, old_to_new_idxes
)
between_factors.extend(self._between_factors_from_pose_priors(i1Ti2_priors, old_to_new_idxes))

wRi_list_subset = self._run_with_consecutive_ordering(
num_connected_nodes=len(nodes_with_edges), between_factors=between_factors
)

old_to_new_idxs = {old_idx: i for i, old_idx in enumerate(nodes_with_edges)}

i2Ri1_dict_remapped = {
(old_to_new_idxs[i1], old_to_new_idxs[i2]): i2Ri1 for (i1, i2), i2Ri1 in i2Ri1_dict.items()
}
num_correspondences_dict: Dict[Tuple[int, int], int] = {
(old_to_new_idxs[i1], old_to_new_idxs[i2]): len(v_corr_idxs[(i1, i2)])
for (i1, i2) in v_corr_idxs.keys()
if (i1, i2) in i2Ri1_dict
}

def _create_factors_and_run() -> List[Rot3]:
measurements: gtsam.BinaryMeasurementsRot3 = self.__measurements_from_2view_relative_rotations(
i2Ri1_dict=i2Ri1_dict_remapped, num_correspondences_dict=num_correspondences_dict
)
measurements.extend(self._measurements_from_pose_priors(i1Ti2_priors, old_to_new_idxs))
wRi_list_subset = self._run_with_consecutive_ordering(
num_connected_nodes=len(nodes_with_edges), measurements=measurements
)
return wRi_list_subset

try:
wRi_list_subset = _create_factors_and_run()
except RuntimeError:
logger.exception("Shonan failed")
if self._weight_by_inliers is True:
logger.info("Reattempting Shonan without inlier-weighted costs...")
# At times, Shonan's `SparseMinimumEigenValue` fails to compute minimum eigenvalue.
self._weight_by_inliers = False
wRi_list_subset = _create_factors_and_run()
wRi_list = [None] * num_images
for remapped_i, original_i in enumerate(nodes_with_edges):
wRi_list[original_i] = wRi_list_subset[remapped_i]
Expand Down
4 changes: 3 additions & 1 deletion gtsfm/configs/unified.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -65,15 +65,17 @@ SceneOptimizer:
# comment out to not run
view_graph_estimator:
_target_: gtsfm.view_graph_estimator.cycle_consistent_rotation_estimator.CycleConsistentRotationViewGraphEstimator
edge_error_aggregation_criterion: MEDIAN_EDGE_ERROR
edge_error_aggregation_criterion: MIN_EDGE_ERROR

rot_avg_module:
_target_: gtsfm.averaging.rotation.shonan.ShonanRotationAveraging
weight_by_inliers: True

trans_avg_module:
_target_: gtsfm.averaging.translation.averaging_1dsfm.TranslationAveraging1DSFM
robust_measurement_noise: True
projection_sampling_method: SAMPLE_INPUT_MEASUREMENTS
reject_outliers: True

data_association_module:
_target_: gtsfm.data_association.data_assoc.DataAssociation
Expand Down
6 changes: 6 additions & 0 deletions gtsfm/frontend/verifier/verifier_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,12 @@ def get_ui_metadata() -> UiMetadata:
parent_plate="Two-View Estimator",
)

def __repr__(self) -> str:
return (
f"{type(self).__name__}"
+ f"__use_intrinsics{self._use_intrinsics_in_verification}_{self._estimation_threshold_px}px"
)

def __init__(
self,
use_intrinsics_in_verification: bool,
Expand Down
Loading

0 comments on commit 53aa1b2

Please sign in to comment.