Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add MIFGSM Attack #717

Merged
merged 7 commits into from
Nov 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions foolbox/attacks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,11 @@
L2AdamBasicIterativeAttack,
LinfAdamBasicIterativeAttack,
)
from .mi_fgsm import ( # noqa: F401
L1MomentumIterativeFastGradientMethod,
L2MomentumIterativeFastGradientMethod,
LinfMomentumIterativeFastGradientMethod,
)
from .fast_gradient_method import ( # noqa: F401
L1FastGradientAttack,
L2FastGradientAttack,
Expand Down Expand Up @@ -93,6 +98,7 @@
L2PGD = L2ProjectedGradientDescentAttack
LinfPGD = LinfProjectedGradientDescentAttack
PGD = LinfPGD
MIFGSM = LinfMomentumIterativeFastGradientMethod

L1AdamPGD = L1AdamProjectedGradientDescentAttack
L2AdamPGD = L2AdamProjectedGradientDescentAttack
Expand Down
143 changes: 143 additions & 0 deletions foolbox/attacks/mi_fgsm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
from functools import partial
from typing import Callable, Optional

from foolbox.attacks.gradient_descent_base import normalize_lp_norms

from .basic_iterative_method import (
Optimizer,
L1BasicIterativeAttack,
L2BasicIterativeAttack,
LinfBasicIterativeAttack,
)
import eagerpy as ep


class GDMOptimizer(Optimizer):
"""Momentum-based Gradient Descent Optimizer

Args:
x : Optimization variable for initialization of accumulation grad
stepsize : Stepsize for gradient descent
momentum : Momentum factor for accumulation grad
normalize_fn : Function to normalize the gradient
"""

def __init__(
self,
x: ep.Tensor,
stepsize: float,
momentum: float = 1.0,
normalize_fn: Callable[[ep.Tensor], ep.Tensor] = lambda x: x.sign(),
):
self.stepsize = stepsize
self.momentum = momentum
self.normalize = normalize_fn
self.accumulation_grad = ep.zeros_like(x)

def __call__(self, gradient: ep.Tensor) -> ep.Tensor:
self.accumulation_grad = self.momentum * self.accumulation_grad + gradient
return self.stepsize * self.normalize(self.accumulation_grad)


class L1MomentumIterativeFastGradientMethod(L1BasicIterativeAttack):
"""L1 Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [#Dong18]

Args:
momentum : Momentum factor for accumulation grad
rel_stepsize : Stepsize relative to epsilon
abs_stepsize : If given, it takes precedence over rel_stepsize.
steps : Number of update steps to perform.
random_start : Whether the perturbation is initialized randomly or starts at zero.
"""

def __init__(
self,
*,
momentum: float = 1.0,
rel_stepsize: float = 0.2,
abs_stepsize: Optional[float] = None,
steps: int = 10,
random_start: bool = False,
):
self.momentum = momentum
super().__init__(
rel_stepsize=rel_stepsize,
abs_stepsize=abs_stepsize,
steps=steps,
random_start=random_start,
)

def get_optimizer(self, x: ep.Tensor, stepsize: float) -> Optimizer:
return GDMOptimizer(
x, stepsize, self.momentum, partial(normalize_lp_norms, p=1)
)


class L2MomentumIterativeFastGradientMethod(L2BasicIterativeAttack):
"""L2 Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [#Dong18]

Args:
momentum : Momentum factor for accumulation grad
rel_stepsize : Stepsize relative to epsilon
abs_stepsize : If given, it takes precedence over rel_stepsize.
steps : Number of update steps to perform.
random_start : Whether the perturbation is initialized randomly or starts at zero.
"""

def __init__(
self,
*,
momentum: float = 1.0,
rel_stepsize: float = 0.2,
abs_stepsize: Optional[float] = None,
steps: int = 10,
random_start: bool = False,
):
self.momentum = momentum
super().__init__(
rel_stepsize=rel_stepsize,
abs_stepsize=abs_stepsize,
steps=steps,
random_start=random_start,
)

def get_optimizer(self, x: ep.Tensor, stepsize: float) -> Optimizer:
return GDMOptimizer(
x, stepsize, self.momentum, partial(normalize_lp_norms, p=2)
)


class LinfMomentumIterativeFastGradientMethod(LinfBasicIterativeAttack):
"""Linf Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [#Dong18]

Args:
momentum : Momentum factor for accumulation grad
rel_stepsize : Stepsize relative to epsilon
abs_stepsize : If given, it takes precedence over rel_stepsize.
steps : Number of update steps to perform.
random_start : Whether the perturbation is initialized randomly or starts at zero.

References: .. [#Dong18] Dong Y, Liao F, Pang T, et al. Boosting adversarial attacks with momentum[
C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 9185-9193.
https://arxiv.org/abs/1710.06081
"""

def __init__(
self,
*,
momentum: float = 1.0,
rel_stepsize: float = 0.2,
abs_stepsize: Optional[float] = None,
steps: int = 10,
random_start: bool = False,
):
self.momentum = momentum
super().__init__(
rel_stepsize=rel_stepsize,
abs_stepsize=abs_stepsize,
steps=steps,
random_start=random_start,
)

def get_optimizer(self, x: ep.Tensor, stepsize: float) -> Optimizer:
return GDMOptimizer(x, stepsize, self.momentum)
18 changes: 18 additions & 0 deletions tests/test_attacks.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,15 @@ def get_attack_id(x: AttackTestTarget) -> str:
AttackTestTarget(fa.FGSM(), Linf(100.0), uses_grad=True),
AttackTestTarget(FGSM_GE(), Linf(100.0)),
AttackTestTarget(fa.FGM(), L2(100.0), uses_grad=True),
AttackTestTarget(
fa.LinfMomentumIterativeFastGradientMethod(), Linf(1.0), uses_grad=True
),
AttackTestTarget(
fa.L2MomentumIterativeFastGradientMethod(), L2(50.0), uses_grad=True
),
AttackTestTarget(
fa.L1MomentumIterativeFastGradientMethod(), 5000.0, uses_grad=True
),
AttackTestTarget(fa.L1FastGradientAttack(), 5000.0, uses_grad=True),
AttackTestTarget(
fa.GaussianBlurAttack(steps=10), uses_grad=True, requires_real_model=True
Expand Down Expand Up @@ -243,6 +252,15 @@ def test_untargeted_attacks(
),
AttackTestTarget(fa.L2AdamBasicIterativeAttack(), L2(50.0), uses_grad=True),
AttackTestTarget(fa.L1AdamBasicIterativeAttack(), 5000.0, uses_grad=True),
AttackTestTarget(
fa.LinfMomentumIterativeFastGradientMethod(), Linf(1.0), uses_grad=True
),
AttackTestTarget(
fa.L2MomentumIterativeFastGradientMethod(), L2(50.0), uses_grad=True
),
AttackTestTarget(
fa.L1MomentumIterativeFastGradientMethod(), 5000.0, uses_grad=True
),
AttackTestTarget(fa.SparseL1DescentAttack(), 5000.0, uses_grad=True),
]

Expand Down
Loading