Skip to content

Commit

Permalink
chore: sk notebooks (#244)
Browse files Browse the repository at this point in the history
* chores: add sk docs

* chore: add sk nb1

* fix: nb for sk

* fix: sk with embedings settings

* fix: update sk notebooks
  • Loading branch information
danielhjz authored Feb 2, 2024
1 parent a40c1ca commit abdc467
Show file tree
Hide file tree
Showing 4 changed files with 1,103 additions and 1 deletion.
153 changes: 153 additions & 0 deletions cookbook/extensions/semantic_kernel/agent_with_sk.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Semantic Kernel Planner\n",
"\n",
"在[chatbot][./chatbot_with_sk.ipynb]中我们介绍\n",
"在Semantic-Kernel(以下简称SK)中,有若干可以用于实现Plan的Planner类型:\n",
"- SequentialPlanner:整体规划多步plan,在串联进行执行\n",
"- ActionPlanner:创建单个Action的Planner。\n",
"- StepwisePlanner:根据大模型的响应,逐步的进行计划和执行,类似于ReAct"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"接下来我们来了解如何结合qianfan + planner实现一个简单的demo"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 前置准备\n",
"### 安装依赖:\n",
"本文基于semantic-kernel `0.4.5dev0` 版本,由于 SK持续迭代的原因,原来的Skill正在迁移成Plugin,如碰到不兼容问题请检查依赖版本。\n",
"使用以下命令可以安装我们所需要的`qianfan` 以及 `semantic-kernel`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install \"qianfan>=0.3.0\" -U\n",
"! pip install semantic-kernel=='0.4.5.dev0'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"与直接调用千帆SDK类似,我们需要先初始化鉴权(以下以使用IAM鉴权为例):"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"\n",
"import os\n",
"\n",
"os.environ[\"QIANFAN_AK\"] = \"your_ak\"\n",
"os.environ[\"QIANFAN_SK\"] = \"your_sk\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"初始化一个SK `kernel`, kernel是 SK中的一个重要类型,通过Kernel,我们可以把众多Plugin,LLM,以及Memory等进行注册组合,最终实现一键式的规划调用。"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import semantic_kernel as sk\n",
"kernel = sk.Kernel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"以下是使用`ActionPlanner`实现的计算的一个例子:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Copyright (c) Microsoft. All rights reserved.\n",
"import semantic_kernel as sk\n",
"from qianfan.extensions.semantic_kernel import QianfanChatCompletion\n",
"from semantic_kernel.core_skills import FileIOSkill, MathSkill, TextSkill, TimeSkill\n",
"from semantic_kernel.planning import ActionPlanner\n",
"\n",
"\n",
"kernel = sk.Kernel()\n",
"\n",
"kernel.add_chat_service(\"erniebot\", QianfanChatCompletion(\"ERNIE-Bot-4\"))\n",
"kernel.import_skill(MathSkill(), \"math\")\n",
"kernel.import_skill(FileIOSkill(), \"fileIO\")\n",
"kernel.import_skill(TimeSkill(), \"time\")\n",
"kernel.import_skill(TextSkill(), \"text\")\n",
"\n",
"# create an instance of action planner.\n",
"planner = ActionPlanner(kernel)\n",
"\n",
"# the ask for which the action planner is going to find a relevant function.\n",
"ask = \"What is the sum of 110 and 990?\"\n",
"\n",
"# ask the action planner to identify a suitable function from the list of functions available.\n",
"plan = await planner.create_plan_async(goal=ask)\n",
"\n",
"# ask the action planner to execute the identified function.\n",
"result = await plan.invoke_async()\n",
"print(result)\n",
"\"\"\"\n",
"Output:\n",
"1100\n",
"\"\"\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"vscode": {
"interpreter": {
"hash": "58f7cb64c3a06383b7f18d2a11305edccbad427293a2b4afa7abe8bfc810d4bb"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading

0 comments on commit abdc467

Please sign in to comment.