-
Notifications
You must be signed in to change notification settings - Fork 8
SAnDReS
SAnDReS (Statistical Analysis of Docking Results and Scoring functions) draws inspiration from several protein systems. These projects began in the 1990s with pioneering studies focused on intermolecular interactions between cyclin-dependent kinase (CDK) (EC 2.7.11.22) and inhibitors (de Azevedo et al., 1996; de Azevedo et al., 1997). SAnDReS is a free and open-source (GNU General Public License) computational environment for the development of machine-learning models (Bitencourt-Ferreira & de Azevedo, 2019; Bitencourt-Ferreira et al., 2021; Bitencourt-Ferreira, Rizzotto et al., 2021) for the prediction of ligand-binding affinity (Xavier et al., 2016; Bitencourt-Ferreira & de Azevedo, 2019; Veit-Acosta & de Azevedo, 2022). We developed SAnDReS using Python programming language, and SciPy, NumPy, Scikit-Learn (Pedregosa et al., 2011), and Matplotlib libraries as a computational tool to explore the scoring function space (SFS) concept (Ross et al., 2013; Heck et al., 2017; Bitencourt-Ferreira & de Azevedo, 2019; Veríssimo et al., 2022; Bitencourt-Ferreira et al., 2024).
SAnDReS 2.0 brings together advanced tools for protein-ligand docking simulation and machine-learning modeling (de Azevedo et al., 2024 ). We have AutoDock Vina (version 1.2.3) (Eberhardt et al., 2021) as a docking engine. Also, SAnDReS 2.0 uses machine-learning methods available in the Scikit-Learn library. It has 54 regression methods, which allow us to explore the SFS. This exploration of the SFS permits us to have an adequate machine-learning model for a targeted protein system (Seifert, 2009). SAnDReS predicts binding affinity for a specific protein system with superior performance compared to classical scoring functions and other machine-learning scoring functions such as KDEEP (Jiménez et al., 2018), CSM-lig (Pires & Ascher, 2016), and ΔVinaRF20 (Wang & Zhang, 2017). Evaluation of predictive performance of 107 scoring functions against CASF-2016 benchmark (Su et al., 2019) indicates that a machine-learning model developed with SAnDReS 2.0 outperformed all classical and machine-learning scoring functions. In summary, SAnDReS 2.0 allows you to design a reliable scoring function adequate to the protein system of your interest.
de Azevedo WF Jr, Quiroga R, Villarreal MA, da Silveira NJF, Bitencourt-Ferreira G, da Silva AD, Veit-Acosta M, Oliveira PR, Tutone M, Biziukova N, Poroikov V, Tarasova O, Baud S. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space. J Comput Chem. 2024; 45(27): 2333–2346. PubMed
References
Bitencourt-Ferreira G, de Azevedo WF Jr. SAnDReS: A Computational Tool for Docking. Methods Mol Biol. 2019; 2053: 51–65. PubMed
Bitencourt-Ferreira G, de Azevedo WF Jr. Machine Learning to Predict Binding Affinity. Methods Mol Biol. 2019; 2053: 251–273. PubMed
Bitencourt-Ferreira G, de Azevedo WF Jr. Exploring the Scoring Function Space. Methods Mol Biol. 2019; 2053: 275–281. PubMed
Bitencourt-Ferreira G, da Silva AD, de Azevedo WF Jr. Application of Machine Learning Techniques to Predict Binding Affinity for Drug Targets. A Study of Cyclin-Dependent Kinase 2. Curr Med Chem. 2021; 28(2): 253–265. PubMed
Bitencourt-Ferreira G, Rizzotto C, de Azevedo Junior WF. Machine Learning-Based Scoring Functions. Development and Applications With SAnDReS. Curr Med Chem. 2021; 28(9): 1746–1756. PubMed
Bitencourt-Ferreira G, Villarreal MA, Quiroga R, Biziukova N, Poroikov V, Tarasova O, de Azevedo Junior WF. Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Curr Med Chem. 2024; 31(17): 2361–2377. PubMed
de Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A. 1996; 93(7): 2735–2740. PubMed
de Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem. 1997; 243(1-2): 518–526. PubMed
de Azevedo WF Jr, Quiroga R, Villarreal MA, da Silveira NJF, Bitencourt-Ferreira G, da Silva AD, Veit-Acosta M, Oliveira PR, Tutone M, Biziukova N, Poroikov V, Tarasova O, Baud S. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space. J Comput Chem. 2024; 45(27): 2333-2346. PubMed
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021; 61(8): 3891–3898. PubMed
Heck GS, Pintro VO, Pereira RR, de Ávila MB, Levin NMB, de Azevedo WF. Supervised Machine Learning Methods Applied to Predict Ligand-Binding Affinity. Curr Med Chem. 2017; 24(23): 2459–2470. PubMed
Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G. KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. J Chem Inf Model. 2018; 58(2): 287–296. PubMed
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Verplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011; 12: 2825–2830. PDF
Pires DE, Ascher DB. CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res. 2016; 44(W1): W557–W561. PubMed
Ross GA, Morris GM, Biggin PC. One Size Does Not Fit All: The Limits of Structure-Based Models in Drug Discovery. J Chem Theory Comput. 2013; 9(9): 4266–4274. PubMed
Seifert MH. Targeted scoring functions for virtual screening. Drug Discov Today. 2009; 14(11-12): 562–569. PubMed
Su M, Yang Q, Du Y, Feng G, Liu Z, Li Y, Wang R. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J Chem Inf Model. 2019; 59(2): 895–913. PubMed
Veit-Acosta M, de Azevedo Junior WF. Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery. Curr Med Chem. 2022; 29(14): 2438–2455. PubMed
Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov. 2022; 17(9): 929–947. PubMed
Wang C, Zhang Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J Comput Chem. 2017; 38(3): 169–177. PubMed
Xavier MM, Heck GS, de Avila MB, Levin NM, Pintro VO, Carvalho NL, Azevedo WF Jr. SAnDReS a Computational Tool for Statistical Analysis of Docking Results and Development of Scoring Functions. Comb Chem High Throughput Screen. 2016; 19(10): 801–812. PubMed