Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add AdEx cells. #2230

Open
wants to merge 16 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions arbor/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ set(arbor_sources
io/serialize_hex.cpp
label_resolution.cpp
lif_cell_group.cpp
adex_cell_group.cpp
cable_cell_group.cpp
mechcat.cpp
mechinfo.cpp
Expand Down
282 changes: 282 additions & 0 deletions arbor/adex_cell_group.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,282 @@
#include "adex_cell_group.hpp"

#include <arbor/arbexcept.hpp>

#include "arbor/math.hpp"
#include "util/rangeutil.hpp"
#include "util/span.hpp"
#include "label_resolution.hpp"
#include "profile/profiler_macro.hpp"

#include <iostream>

using namespace arb;

// Constructor containing gid of first cell in a group and a container of all cells.
adex_cell_group::adex_cell_group(const std::vector<cell_gid_type>& gids,
const recipe& rec,
cell_label_range& cg_sources,
cell_label_range& cg_targets):
gids_(gids) {

for (auto gid: gids_) {
const auto& cell = util::any_cast<adex_cell>(rec.get_cell_description(gid));
// set up cell state
cells_.push_back(cell);
// tell our caller about this cell's connections
cg_sources.add_cell();
cg_targets.add_cell();
cg_sources.add_label(hash_value(cell.source), {0, 1});
cg_targets.add_label(hash_value(cell.target), {0, 1});
// insert probes where needed
auto probes = rec.get_probes(gid);
for (const auto& probe: probes) {
if (probe.address.type() == typeid(adex_probe_voltage)) {
cell_address_type addr{gid, probe.tag};
if (probes_.count(addr)) throw dup_cell_probe(cell_kind::adex, gid, probe.tag);
probes_.insert_or_assign(addr, adex_probe_info{adex_probe_kind::voltage, {}});
}
else if (probe.address.type() == typeid(adex_probe_adaption)) {
cell_address_type addr{gid, probe.tag};
if (probes_.count(addr)) throw dup_cell_probe(cell_kind::adex, gid, probe.tag);
probes_.insert_or_assign(addr, adex_probe_info{adex_probe_kind::adaption, {}});
}
else {
throw bad_cell_probe{cell_kind::adex, gid};
}
}
// set up the internal state
next_update_.push_back(0);
current_time_.push_back(0);
}
}

cell_kind adex_cell_group::get_cell_kind() const {
return cell_kind::adex;
}

void adex_cell_group::advance(epoch ep, time_type dt, const event_lane_subrange& event_lanes) {
PE(advance:adex);
for (auto lid: util::make_span(gids_.size())) {
// Advance each cell independently.
advance_cell(ep.t1, dt, lid, event_lanes);
}
PL();
}

const std::vector<spike>& adex_cell_group::spikes() const {
return spikes_;
}

void adex_cell_group::clear_spikes() {
spikes_.clear();
}

void adex_cell_group::add_sampler(sampler_association_handle h,
cell_member_predicate probeset_ids,
schedule sched,
sampler_function fn) {
std::lock_guard<std::mutex> guard(sampler_mex_);
std::vector<cell_address_type> probeset;
for (const auto& [k, v]: probes_) {
if (probeset_ids(k)) probeset.push_back(k);
}
auto assoc = arb::sampler_association{std::move(sched),
std::move(fn),
std::move(probeset)};
auto result = samplers_.insert({h, std::move(assoc)});
arb_assert(result.second);
}

void adex_cell_group::remove_sampler(sampler_association_handle h) {
std::lock_guard<std::mutex> guard(sampler_mex_);
samplers_.erase(h);
}
void adex_cell_group::remove_all_samplers() {
std::lock_guard<std::mutex> guard(sampler_mex_);
samplers_.clear();
}

void adex_cell_group::reset() {
spikes_.clear();
}

// integrate a single cell's state from current time `cur` to final time `end`.
// Extra parameters
// * the cell cannot be updated until time `nxt`, which might be in the past or future.
//
// We can be in three states:
// 1. nxt <= cur: we can simply update the cell without further consideration
// 2. cur < nxt <= end: we perform two steps:
// a. cur - nxt: refractory period, just manipulate w
// b. nxt - end: normal dynamics, add spike
// 3. nxt > end. Skip everything
void integrate_until(adex_lowered_cell& cell, const time_type end, const time_type& nxt, time_type& cur) {
// perform pre-step to skip refractory period. This _might_ put cell state beyond the epoch end.
if (nxt > cur) cur = std::min(nxt, end);
// if we still have time left, perform the integration.
if (nxt > end) return;
auto delta = end - cur;
auto dE = cell.V_m - cell.E_L;
auto il = cell.g*dE;
auto is = cell.g*cell.delta*exp((cell.V_m - cell.V_th)/cell.delta);
auto dV = (is - il - cell.w)/cell.C_m;
cell.V_m += delta*dV;

auto dW = (cell.a*dE - cell.w)/cell.tau;
cell.w += delta*dW;
cur = end;
}

void check_spike(adex_lowered_cell& cell, const time_type time, time_type& nxt, const cell_gid_type gid, std::vector<spike>& spikes) {
if (time > nxt && cell.V_m >= cell.V_th) {
spikes.emplace_back(cell_member_type{gid, 0}, time);
// reset membrane potential
cell.V_m = cell.E_R;
// schedule next update
nxt = time + cell.t_ref;
cell.w += cell.b;
}
}

void adex_cell_group::advance_cell(time_type t_fin,
time_type dt,
cell_gid_type lid,
const event_lane_subrange& event_lanes) {
auto time = current_time_[lid];
auto gid = gids_[lid];
// Flattened sampler map
std::vector<probe_metadata> sample_metadata;
std::vector<sampler_association_handle> sample_callbacks;
std::vector<std::vector<sample_record>> sample_records;

struct sample_event {
time_type time;
adex_probe_kind kind;
double* data;
};

std::vector<sample_event> sample_events;
std::vector<double> sample_data;

if (!samplers_.empty()) {
auto tlast = time;
std::vector<size_t> sample_sizes;
std::size_t total_size = 0;
{
std::lock_guard<std::mutex> guard(sampler_mex_);
for (auto& [hdl, assoc]: samplers_) {
// No need to generate events
if (assoc.probeset_ids.empty()) continue;
// Construct sampling times, might give us the last time we sampled, so skip that.
auto times = util::make_range(assoc.sched.events(tlast, t_fin));
// while (!times.empty() && times.front() == tlast) times.left++;
if (times.empty()) continue;
for (unsigned idx = 0; idx < assoc.probeset_ids.size(); ++idx) {
const auto& pid = assoc.probeset_ids[idx];
if (pid.gid != gid) continue;
const auto& probe = probes_.at(pid);
sample_metadata.push_back({pid, idx, util::any_ptr{&probe.metadata}});
sample_callbacks.push_back(hdl);
sample_records.emplace_back();
auto& records = sample_records.back();
sample_sizes.push_back(times.size());
total_size += times.size();
for (auto t: times) {
records.push_back(sample_record{t, nullptr});
sample_events.push_back(sample_event{t, probe.kind, nullptr});
}
}
}
}
// Flat list of things to sample
// NOTE: Need to allocate in one go, else reallocation will mess up the pointers!
sample_data.resize(total_size);
auto rx = 0;
for (unsigned ix = 0; ix < sample_sizes.size(); ++ix) {
auto size = sample_sizes[ix];
for (int kx = 0; kx < size; ++kx) {
sample_records[ix][kx].data = const_cast<const double*>(sample_data.data() + rx);
sample_events[rx].data = sample_data.data() + rx;
++rx;
}
}
}
util::sort_by(sample_events, [](const auto& s) { return s.time; });
auto n_samples = sample_events.size();

auto& cell = cells_[lid];
auto n_events = static_cast<int>(!event_lanes.empty() ? event_lanes[lid].size() : 0);
auto evt_idx = 0;
auto spl_idx = 0;
while (time < t_fin) {
auto t_end = std::min(t_fin, time + dt);
// forward progress?
arb_assert(t_end > time);
auto V_0 = cell.V_m;
auto W_0 = cell.w;
// Process events in [time, time + dt)
// delivering each at the exact time
for (;; ++evt_idx) {
if (evt_idx >= n_events) break;
if (event_lanes[lid][evt_idx].time >= t_end) break;

const auto& evt = event_lanes[lid][evt_idx];
integrate_until(cell, evt.time, next_update_[lid], current_time_[lid]);
// NOTE we _could check here instead or in addition.
// check_spike(cell, evt.time, next_update_[lid], gid, spikes_);
if (next_update_[lid] <= evt.time) cell.V_m += evt.weight/cell.C_m;
check_spike(cell, evt.time, next_update_[lid], gid, spikes_);
}
// if there's time left before t_end, integrate until that
integrate_until(cell, t_end, next_update_[lid], current_time_[lid]);
check_spike(cell, t_end, next_update_[lid], gid, spikes_);

// now process the sampling events
for (;; ++spl_idx) {
if (spl_idx >= n_samples) break;
const auto& evt = sample_events[spl_idx];
if (evt.time > t_end) break;
// interpolation paramter
auto t = (evt.time - time)/dt;
if (evt.kind == adex_probe_kind::voltage) *evt.data = math::lerp(V_0, cell.V_m, t);
if (evt.kind == adex_probe_kind::adaption) *evt.data = math::lerp(W_0, cell.w, t);
}

time = t_end;
}

arb_assert(time == t_fin);
arb_assert(evt_idx == n_events);
arb_assert(spl_idx == n_samples);

auto n_samplers = sample_callbacks.size();
{
std::lock_guard<std::mutex> guard{sampler_mex_};
for (int s_idx = 0; s_idx < n_samplers; ++s_idx) {
const auto& sd = sample_records[s_idx];
auto hdl = sample_callbacks[s_idx];
const auto& fun = samplers_[hdl].sampler;
arb_assert(fun);
fun(sample_metadata[s_idx], sd.size(), sd.data());
}
}
}

void adex_cell_group::t_serialize(serializer& ser, const std::string& k) const {
serialize(ser, k, *this);
}

void adex_cell_group::t_deserialize(serializer& ser, const std::string& k) {
deserialize(ser, k, *this);
}

std::vector<probe_metadata> adex_cell_group::get_probe_metadata(const cell_address_type& key) const {
// SAFETY: Probe associations are fixed after construction, so we do not
// need to grab the mutex.
if (probes_.count(key)) {
return {probe_metadata{key, 0, &probes_.at(key).metadata}};
} else {
return {};
}
}
Loading