Skip to content

Commit

Permalink
Merge branch 'master' into universal-algebra
Browse files Browse the repository at this point in the history
  • Loading branch information
benediktahrens authored Jan 31, 2024
2 parents cc80340 + 1c2cce1 commit 644f5e1
Show file tree
Hide file tree
Showing 11 changed files with 27 additions and 30 deletions.
10 changes: 5 additions & 5 deletions UniMath/Bicategories/DisplayedBicats/DisplayedUniversalArrow.v
Original file line number Diff line number Diff line change
Expand Up @@ -197,14 +197,14 @@ Section MakeDisplayedLeftUniversalArrowIfPropositional.
(ff1 : xx -->[ f1] RR y yy) (ff2 : xx -->[ f2] RR y yy)
(α : f1 ==> f2),
ff1 ==>[α] ff2
→ (LL_mor x xx y yy f1 ff1) ==>[(# (right_adjoint ((pr22 LUR) x y)))%Cat α]
→ (LL_mor x xx y yy f1 ff1) ==>[(# (right_adjoint ((pr22 LUR) x y)))%cat α]
(LL_mor x xx y yy f2 ff2)).
Context (LL_unit : ∏ x xx y yy f ff,
ff ==>[adjunit (adj x y) f]
(LL_mor x xx y yy (η x · (# R)%Cat f) (ηη x xx ;; disp_psfunctor_mor D1 D2 R RR ff))).
(LL_mor x xx y yy (η x · (# R)%cat f) (ηη x xx ;; disp_psfunctor_mor D1 D2 R RR ff))).

Context (LL_unit_inv : ∏ x xx y yy f ff,
(LL_mor x xx y yy ((pr12 LUR) x · (# R)%Cat f) (ηη x xx ;; disp_psfunctor_mor D1 D2 R RR ff))
(LL_mor x xx y yy ((pr12 LUR) x · (# R)%cat f) (ηη x xx ;; disp_psfunctor_mor D1 D2 R RR ff))
==>[inv_from_z_iso (unit_pointwise_z_iso_from_adj_equivalence (adj x y) _)] ff).

Context (LL_counit : ∏ x xx y yy f ff,
Expand Down Expand Up @@ -314,12 +314,12 @@ Section MakeDisplayedLeftUniversalArrowIfGroupoidalAndProp.
(ff1 : xx -->[ f1] RR y yy) (ff2 : xx -->[ f2] RR y yy)
(α : f1 ==> f2),
ff1 ==>[α] ff2
→ (LL_mor x xx y yy f1 ff1) ==>[(# (right_adjoint ((pr22 LUR) x y)))%Cat α]
→ (LL_mor x xx y yy f1 ff1) ==>[(# (right_adjoint ((pr22 LUR) x y)))%cat α]
(LL_mor x xx y yy f2 ff2)
).
Context (LL_unit : ∏ x xx y yy f ff,
ff ==>[adjunit (adj x y) f]
(LL_mor x xx y yy (η x · (# R)%Cat f) (ηη x xx ;; disp_psfunctor_mor D1 D2 R RR ff))).
(LL_mor x xx y yy (η x · (# R)%cat f) (ηη x xx ;; disp_psfunctor_mor D1 D2 R RR ff))).

Context (LL_counit : ∏ x xx y yy f ff,
(ηη x xx ;; disp_psfunctor_mor D1 D2 R RR (LL_mor x xx y yy f ff))
Expand Down
1 change: 0 additions & 1 deletion UniMath/CategoryTheory/Core/Categories.v
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@ Definition precategory_morphisms { C : precategory_ob_mor } :

Declare Scope cat.
Delimit Scope cat with cat. (* for precategories *)
Delimit Scope cat with Cat. (* a slight enhancement for categories *)
Local Open Scope cat.

Notation "a --> b" := (precategory_morphisms a b) : cat.
Expand Down
8 changes: 4 additions & 4 deletions UniMath/CategoryTheory/DisplayedCats/Examples/Reindexing.v
Original file line number Diff line number Diff line change
Expand Up @@ -483,15 +483,15 @@ Section IsCartesianFromReindexDispCat.
(identity _)
(transportb
(λ z, xx -->[ z] yy)
(id_left ((# F)%Cat f))
(id_left ((# F)%cat f))
ff)
;;
cartesian_factorisation
Hff
(identity _)
(transportb
(mor_disp (pr1 ℓ) yy)
(maponpaths (λ z, (# F)%Cat z) (id_left f))
(maponpaths (λ z, (# F)%cat z) (id_left f))
(pr12 ℓ)))%mor_disp
as m'.
pose (@cartesian_factorisation_unique
Expand Down Expand Up @@ -530,7 +530,7 @@ Section IsCartesianFromReindexDispCat.
(identity _)
(transportb
(mor_disp (pr1 ℓ) yy)
(maponpaths (λ z : C₁ ⟦ x, y ⟧, (# F)%Cat z) (id_left f))
(maponpaths (λ z : C₁ ⟦ x, y ⟧, (# F) z) (id_left f))
(pr12 ℓ)))
as q.
cbn in q.
Expand Down Expand Up @@ -1120,7 +1120,7 @@ Section ReindexIsPB.
_
(pr2 (HD₂ _ _ (nat_z_iso_pointwise_z_iso α x) (pr2 (G x)))
;;
(pr2 (#G f))%Cat
(pr2 (#G f))%cat
;;
inv_mor_disp_from_z_iso
(pr2 (HD₂ _ _ (nat_z_iso_pointwise_z_iso α y) (pr2 (G y)))))%mor_disp).
Expand Down
2 changes: 1 addition & 1 deletion UniMath/CategoryTheory/DisplayedCats/Functors.v
Original file line number Diff line number Diff line change
Expand Up @@ -405,7 +405,7 @@ Section Disp_Functor.
{f : x --> y}
{xx : D₁ x}
{yy : D₁ y}
(ff : FF x xx -->[ (#F f)%Cat ] FF y yy)
(ff : FF x xx -->[ (#F f) ] FF y yy)
: ♯FF (disp_functor_ff_inv FF HFF ff) = ff.
Proof.
apply (homotweqinvweq ((disp_functor_ff_weq FF HFF xx yy f))).
Expand Down
4 changes: 2 additions & 2 deletions UniMath/CategoryTheory/DisplayedCats/Limits.v
Original file line number Diff line number Diff line change
Expand Up @@ -401,7 +401,7 @@ Section fiber.

End fiber.

Check fiber_limit.
(* Check fiber_limit. *)

Definition fiber_limits
{C : category}
Expand Down Expand Up @@ -464,7 +464,7 @@ Proof.
intro j.
set (RRt := make_LimCone _ _ _ RT1).
set (RRtt := limArrowCommutes RRt x CC j).
set (RH := maponpaths (#π)%Cat RRtt).
set (RH := maponpaths (#π) RRtt).
cbn in RH.
apply RH.
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ Proof.
- eapply pathscomp0.
2: { apply pathsinv0. apply (transp_pres_comp' H_ob H'_ob H''_ob). }
+ eapply pathscomp0.
* exact (maponpaths (λ mor, mor · ((# F)%Cat g')) H_mor).
* exact (maponpaths (λ mor, mor · ((# F) g')) H_mor).
* exact (maponpaths (λ mor, (transportf_mor H_ob H'_ob f) · mor) H'_mor).
Defined.

Expand Down
10 changes: 5 additions & 5 deletions UniMath/CategoryTheory/DisplayedCats/TotalAdjunction.v
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ Section TotalAdjunction.
assert (hh : (# (left_functor F))
(identity (pr1 x) · (η (pr1 x) · identity (right_functor F (left_functor F (pr1 x)))))
· ε (left_functor F (pr1 x)) =
(# (left_functor F))%Cat (adjunit F (pr1 x)) · adjcounit F (left_functor F (pr1 x))).
(# (left_functor F)) (adjunit F (pr1 x)) · adjcounit F (left_functor F (pr1 x))).
{
apply maponpaths_2.
apply maponpaths.
Expand Down Expand Up @@ -260,10 +260,10 @@ Section TotalAdjunction.

assert (p : identity (right_functor F (pr1 x))
· (η (right_functor F (pr1 x)) · identity (right_functor F (left_functor F (right_functor F (pr1 x)))))
· (# (right_functor F))%Cat
· (# (right_functor F))
(identity (left_functor F (right_functor F (pr1 x))) · (ε (pr1 x) · identity (pr1 x))) =
unit_from_are_adjoints F (right_functor F (pr1 x))
· (# (right_functor F))%Cat (counit_from_are_adjoints F (pr1 x))).
· (# (right_functor F)) (counit_from_are_adjoints F (pr1 x))).
{
rewrite ! id_left.
now rewrite ! id_right.
Expand Down Expand Up @@ -292,8 +292,8 @@ Section TotalAdjunction.
assert (qq : identity (right_functor F (pr1 x))
· (adjunit F (right_functor F (pr1 x))
· identity (right_functor F (left_functor F (right_functor F (pr1 x)))))
· (# (right_functor F))%Cat (adjcounit F (pr1 x)) =
adjunit F (right_functor F (pr1 x)) · (# (right_functor F))%Cat (adjcounit F (pr1 x))).
· (# (right_functor F)) (adjcounit F (pr1 x)) =
adjunit F (right_functor F (pr1 x)) · (# (right_functor F)) (adjcounit F (pr1 x))).
{
rewrite ! id_left.
now rewrite ! id_right.
Expand Down
3 changes: 1 addition & 2 deletions UniMath/CategoryTheory/FunctorCategory.v
Original file line number Diff line number Diff line change
Expand Up @@ -612,8 +612,7 @@ Notation "[ C , D , hs ]" := (functor_precategory C D hs) : cat.

Notation "[ C , D ]" := (functor_category C D) : cat.

Declare Scope Cat.
Notation "G □ F" := (functor_composite (F:[_,_]) (G:[_,_]) : [_,_]) (at level 35) : Cat.
Notation "G □ F" := (functor_composite (F:[_,_]) (G:[_,_]) : [_,_]) (at level 35) : cat.
(* to input: type "\Box" or "\square" or "\sqw" or "\sq" with Agda input method *)

Definition functor_compose {A B C : category} (F : ob [A, B])
Expand Down
8 changes: 4 additions & 4 deletions UniMath/CategoryTheory/Monoidal/Examples/MonoidalDialgebras.v
Original file line number Diff line number Diff line change
Expand Up @@ -657,14 +657,14 @@ Section MonoidalNatTransToDialgebraLifting.
use tpair.
+ cbn.

transparent assert (pfG_is_z_iso : (is_z_isomorphism ( (# G)%Cat (inv_from_z_iso (fmonoidal_preservestensordata Km x y,, fmonoidal_preservestensorstrongly (_,, pr2 Km) x y))))).
transparent assert (pfG_is_z_iso : (is_z_isomorphism ( (# G)%cat (inv_from_z_iso (fmonoidal_preservestensordata Km x y,, fmonoidal_preservestensorstrongly (_,, pr2 Km) x y))))).
{
use functor_on_is_z_isomorphism.
apply is_z_iso_inv_from_z_iso.
}
use (z_iso_inv_to_right _ _ _ _ (_ ,, pfG_is_z_iso)).

transparent assert (pfF_is_z_iso : (is_z_isomorphism ((# F)%Cat
transparent assert (pfF_is_z_iso : (is_z_isomorphism ((# F)%cat
(inv_from_z_iso
(fmonoidal_preservestensordata Km x y,, fmonoidal_preservestensorstrongly (_,, pr2 Km) x y))))).
{
Expand All @@ -681,7 +681,7 @@ Section MonoidalNatTransToDialgebraLifting.
+ cbn.

transparent assert (pfL_is_z_iso :
(is_z_isomorphism ( (# F)%Cat (inv_from_z_iso (fmonoidal_preservesunit Km,, fmonoidal_preservesunitstrongly (_ ,, pr2 Km)))))
(is_z_isomorphism ( (# F)%cat (inv_from_z_iso (fmonoidal_preservesunit Km,, fmonoidal_preservesunitstrongly (_ ,, pr2 Km)))))
).
{
use functor_on_is_z_isomorphism.
Expand All @@ -692,7 +692,7 @@ Section MonoidalNatTransToDialgebraLifting.

transparent assert (pfR_is_z_iso
: (is_z_isomorphism
((# G)%Cat (inv_from_z_iso (fmonoidal_preservesunit Km,, fmonoidal_preservesunitstrongly (_,, pr2 Km)))))).
((# G)%cat (inv_from_z_iso (fmonoidal_preservesunit Km,, fmonoidal_preservesunitstrongly (_,, pr2 Km)))))).
{
use functor_on_is_z_isomorphism.
apply is_z_iso_inv_from_z_iso.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@ Require Import
UniMath.CategoryTheory.RepresentableFunctors.Precategories.
Require Import UniMath.MoreFoundations.Tactics.
Local Open Scope cat.
Local Open Scope Cat.

Definition isUniversal {C:category} {X:[C^op,HSET]} {c:C} (x:c ⇒ X)
:= ∏ (c':C), isweq (λ f : c' --> c, x ⟲ f).
Expand Down
8 changes: 4 additions & 4 deletions UniMath/Induction/W/Fibered.v
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ Require Import UniMath.Induction.FunctorAlgebras_legacy.
Require Import UniMath.Induction.PolynomialFunctors.
Require Import UniMath.Induction.W.Core.

Local Open Scope Cat.
Local Open Scope cat.

Section Fibered.
Context {A : UU} {B : A -> UU}.
Expand Down Expand Up @@ -52,7 +52,7 @@ Section Fibered.
pose (supe := pr2 E).
split with (∑ x : pr1 X, pr1 E x).
intro z; cbn in z; unfold polynomial_functor_obj in *.
pose (z' := ((pr1 z),, pr1 ∘ (pr2 z)) : (∑ a : A, B a → pr1 X)).
pose (z' := ((pr1 z),, (pr1 ∘ (pr2 z))%functions) : (∑ a : A, B a → pr1 X)).
refine (supx z',, supe z' (λ b, (pr2 (pr2 z b)))).
Defined.

Expand All @@ -66,7 +66,7 @@ Section Fibered.
pose (supx := pr2 X).
pose (supe := pr2 E).
exact ((∑ (f : ∏ x : pr1 X, pr1 E x),
∏ a, f (supx a) = supe a (f ∘ (pr2 a)))).
∏ a, f (supx a) = supe a (f ∘ (pr2 a))%functions)).
Defined.

(** A P-algebra section homotopy.
Expand Down Expand Up @@ -111,7 +111,7 @@ Section Fibered.
- do 2 (apply maponpaths).
unfold funhomotsec; cbn.
assert (H : (λ x0 : B (pr1 x), idpath (pr1 f (pr2 x x0))) =
(toforallpaths _ (pr1 f ∘ pr2 x) (pr1 f ∘ pr2 x) (idpath _))).
(toforallpaths _ (pr1 f ∘ pr2 x)%functions (pr1 f ∘ pr2 x)%functions (idpath _))).
reflexivity.
refine ((maponpaths _ H) @ _).
apply funextsec_toforallpaths.
Expand Down

0 comments on commit 644f5e1

Please sign in to comment.