Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
Huowl committed Jan 13, 2025
1 parent 40374a3 commit 281da3b
Show file tree
Hide file tree
Showing 148 changed files with 34,245 additions and 0 deletions.
45 changes: 45 additions & 0 deletions jmoves/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
FROM ubuntu:22.04

RUN apt-get update

# Install base utilities
RUN apt-get update && \
apt-get install -y wget git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*

# Install miniconda
ENV CONDA_DIR /opt/conda
RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh && \
/bin/bash ~/miniconda.sh -b -p /opt/conda


# Put conda in path so we can use conda activate
RUN useradd -m jovyan

ENV PATH=$CONDA_DIR/bin:$PATH
COPY environment_jmoves.yml .

# RUN conda env create -f environment_jmoves.yml
RUN conda env update -n base --file environment_jmoves.yml
RUN conda init

SHELL ["conda", "run", "-n", "base", "/bin/bash", "-c"]

# Install jupiter stuff
RUN conda run -n base pip install jupyter notebook voila
RUN conda run -n base jupyter server extension enable voila --sys-prefix --enable_nbextensions=True

# Install our package
WORKDIR /home/jovyan

COPY . ./jmoves_env
RUN conda run -n base pip install -e ./jmoves_env
RUN conda run -n base pip install ./jmoves_env/meshcat-0.3.2.tar.gz


USER jovyan
ENV PATH=$CONDA_DIR/bin:$PATH
RUN conda init

CMD ["/bin/bash", "-c", "if [ -d /usr/local/bin/before-notebook.d ]; then for file in /usr/local/bin/before-notebook.d/*; do $file ; done; fi && jupyter notebook --no-browser --NotebookApp.allow_origin='*' --NotebookApp.token='' --ip=0.0.0.0 --NotebookApp.allow_remote_access=True"]
121 changes: 121 additions & 0 deletions jmoves/apps/article/create_reward_manager.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
import multiprocessing
from networkx import Graph
import numpy as np
import matplotlib.pyplot as plt

from pymoo.algorithms.soo.nonconvex.pso import PSO
from pymoo.core.problem import StarmapParallelization
from auto_robot_design.generator.restricted_generator.two_link_generator import TwoLinkGenerator, visualize_constrains

from auto_robot_design.optimization.saver import (
ProblemSaver, )
from auto_robot_design.description.builder import jps_graph2pinocchio_robot
from auto_robot_design.description.utils import draw_joint_point
from auto_robot_design.optimization.problems import CalculateCriteriaProblemByWeigths, get_optimizing_joints
from auto_robot_design.optimization.optimizer import PymooOptimizer
from auto_robot_design.pinokla.calc_criterion import ActuatedMass, EffectiveInertiaCompute, ImfCompute, ManipCompute, MovmentSurface, NeutralPoseMass, TranslationErrorMSE, ManipJacobian
from auto_robot_design.pinokla.criterion_agregator import CriteriaAggregator
from auto_robot_design.pinokla.criterion_math import ImfProjections
from auto_robot_design.pinokla.default_traj import convert_x_y_to_6d_traj_xz, get_horizontal_trajectory, get_simple_spline, get_vertical_trajectory, create_simple_step_trajectory, get_workspace_trajectory
from auto_robot_design.optimization.rewards.reward_base import PositioningReward, PositioningConstrain, PositioningErrorCalculator, RewardManager
from auto_robot_design.optimization.rewards.jacobian_and_inertia_rewards import HeavyLiftingReward, AccelerationCapability, MeanHeavyLiftingReward, MinAccelerationCapability
from auto_robot_design.optimization.rewards.pure_jacobian_rewards import EndPointZRRReward, VelocityReward, ForceEllipsoidReward
from auto_robot_design.optimization.rewards.inertia_rewards import MassReward
from auto_robot_design.description.builder import ParametrizedBuilder, DetailedURDFCreatorFixedEE, jps_graph2pinocchio_robot, MIT_CHEETAH_PARAMS_DICT


def get_manager_preset_2_stair_climber(graph: Graph, optimizing_joints: dict, workspace_traj: np.ndarray, step_trajs: list[np.ndarray], squat_trajs: list[np.ndarray]):
dict_trajectory_criteria = {
"MASS": NeutralPoseMass()
}
# criteria calculated for each point on the trajectory
dict_point_criteria = {
"Effective_Inertia": EffectiveInertiaCompute(),
"Actuated_Mass": ActuatedMass(),
"Manip_Jacobian": ManipJacobian(MovmentSurface.XZ)
}

crag = CriteriaAggregator(dict_point_criteria, dict_trajectory_criteria)
error_calculator = PositioningErrorCalculator(
error_key='error', jacobian_key="Manip_Jacobian")
soft_constrain = PositioningConstrain(
error_calculator=error_calculator, points=[workspace_traj])
reward_manager = RewardManager(crag=crag)
reward_manager.add_trajectory_aggregator
acceleration_capability = MinAccelerationCapability(manipulability_key='Manip_Jacobian',
trajectory_key="traj_6d", error_key="error", actuated_mass_key="Actuated_Mass")

heavy_lifting = HeavyLiftingReward(
manipulability_key='Manip_Jacobian', trajectory_key="traj_6d", error_key="error", mass_key="MASS")
# reward_manager.agg_list =
reward_manager.add_trajectory(step_trajs[0], 0)
reward_manager.add_trajectory(step_trajs[1], 1)
reward_manager.add_trajectory(step_trajs[2], 2)

reward_manager.add_trajectory(squat_trajs[0], 10)
reward_manager.add_trajectory(squat_trajs[1], 11)
reward_manager.add_trajectory(squat_trajs[2], 12)

reward_manager.add_reward(acceleration_capability, 0, weight=1)
reward_manager.add_reward(acceleration_capability, 1, weight=1)
reward_manager.add_reward(acceleration_capability, 2, weight=1)

reward_manager.add_reward(heavy_lifting, 10, weight=1)
reward_manager.add_reward(heavy_lifting, 11, weight=1)
reward_manager.add_reward(heavy_lifting, 12, weight=1)

reward_manager.add_trajectory_aggregator([0, 1, 2], 'mean')
reward_manager.add_trajectory_aggregator([10, 11, 12], 'mean')

reward_manager.close_trajectories()

return reward_manager, crag, soft_constrain



def get_manager_preset_2_stair_single(graph: Graph, optimizing_joints: dict, workspace_traj: np.ndarray, step_trajs: list[np.ndarray], squat_trajs: list[np.ndarray]):
dict_trajectory_criteria = {
"MASS": NeutralPoseMass()
}
# criteria calculated for each point on the trajectory
dict_point_criteria = {
"Effective_Inertia": EffectiveInertiaCompute(),
"Actuated_Mass": ActuatedMass(),
"Manip_Jacobian": ManipJacobian(MovmentSurface.XZ)
}

crag = CriteriaAggregator(dict_point_criteria, dict_trajectory_criteria)
error_calculator = PositioningErrorCalculator(
error_key='error', jacobian_key="Manip_Jacobian")
soft_constrain = PositioningConstrain(
error_calculator=error_calculator, points=[workspace_traj])
reward_manager = RewardManager(crag=crag)
reward_manager.add_trajectory_aggregator
acceleration_capability = MinAccelerationCapability(manipulability_key='Manip_Jacobian',
trajectory_key="traj_6d", error_key="error", actuated_mass_key="Actuated_Mass")

heavy_lifting = HeavyLiftingReward(
manipulability_key='Manip_Jacobian', trajectory_key="traj_6d", error_key="error", mass_key="MASS")
# reward_manager.agg_list =
reward_manager.add_trajectory(step_trajs[0], 0)
reward_manager.add_trajectory(step_trajs[1], 1)
reward_manager.add_trajectory(step_trajs[2], 2)

reward_manager.add_trajectory(squat_trajs[0], 10)
reward_manager.add_trajectory(squat_trajs[1], 11)
reward_manager.add_trajectory(squat_trajs[2], 12)

reward_manager.add_reward(acceleration_capability, 0, weight=1)
reward_manager.add_reward(acceleration_capability, 1, weight=1)
reward_manager.add_reward(acceleration_capability, 2, weight=1)

reward_manager.add_reward(heavy_lifting, 10, weight=1)
reward_manager.add_reward(heavy_lifting, 11, weight=1)
reward_manager.add_reward(heavy_lifting, 12, weight=1)

reward_manager.add_trajectory_aggregator([0, 1, 2], 'mean')
reward_manager.add_trajectory_aggregator([10, 11, 12], 'mean')

reward_manager.close_trajectories()

return reward_manager, crag, soft_constrain
140 changes: 140 additions & 0 deletions jmoves/apps/article/crerate_squat_trq_plots.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
from auto_robot_design.pinokla.criterion_agregator import load_criterion_traj
import multiprocessing
from networkx import Graph
import numpy as np
import matplotlib.pyplot as plt

from pymoo.algorithms.soo.nonconvex.pso import PSO
from pymoo.core.problem import StarmapParallelization
from auto_robot_design.generator.restricted_generator.two_link_generator import TwoLinkGenerator, visualize_constrains

from auto_robot_design.optimization.saver import (
ProblemSaver, )
from auto_robot_design.description.builder import jps_graph2pinocchio_robot
from auto_robot_design.description.utils import draw_joint_point
from auto_robot_design.optimization.problems import CalculateCriteriaProblemByWeigths, CalculateMultiCriteriaProblem, get_optimizing_joints
from auto_robot_design.optimization.optimizer import PymooOptimizer
from auto_robot_design.pinokla.analyze_squat_history import get_sample_torque_traj_from_sample_multi
from auto_robot_design.pinokla.calc_criterion import ActuatedMass, EffectiveInertiaCompute, ImfCompute, ManipCompute, MovmentSurface, NeutralPoseMass, TranslationErrorMSE, ManipJacobian
from auto_robot_design.pinokla.criterion_agregator import CriteriaAggregator
from auto_robot_design.pinokla.criterion_math import ImfProjections
from auto_robot_design.pinokla.default_traj import convert_x_y_to_6d_traj_xz, get_horizontal_trajectory, get_simple_spline, get_vertical_trajectory, create_simple_step_trajectory, get_workspace_trajectory
from auto_robot_design.optimization.rewards.reward_base import PositioningReward, PositioningConstrain, PositioningErrorCalculator, RewardManager
from auto_robot_design.optimization.rewards.jacobian_and_inertia_rewards import HeavyLiftingReward, AccelerationCapability, MeanHeavyLiftingReward, MinAccelerationCapability
from auto_robot_design.optimization.rewards.pure_jacobian_rewards import EndPointZRRReward, VelocityReward, ForceEllipsoidReward
from auto_robot_design.optimization.rewards.inertia_rewards import MassReward
from auto_robot_design.description.builder import ParametrizedBuilder, DetailedURDFCreatorFixedEE, jps_graph2pinocchio_robot, MIT_CHEETAH_PARAMS_DICT
from auto_robot_design.description.builder import DetailedURDFCreatorFixedEE, ParametrizedBuilder, jps_graph2urdf_by_bulder
import numpy as np

import matplotlib.pyplot as plt

from auto_robot_design.description.actuators import t_motor_actuators

from auto_robot_design.description.utils import (
all_combinations_active_joints_n_actuator, )

from auto_robot_design.generator.restricted_generator.two_link_generator import TwoLinkGenerator
from auto_robot_design.pinokla.squat import SquatHopParameters, SimulateSquatHop
from auto_robot_design.optimization.analyze import get_optimizer_and_problem, get_pareto_sample_linspace, get_pareto_sample_histogram, get_urdf_from_problem
from pathlib import Path


def get_all_files_in_dir(directory):
try:
# Create a Path object for the directory
path = Path(directory)

# Use the glob method to match all files in the directory
files = [str(file) for file in path.glob('*') if file.is_file()]

return files
except Exception as e:
print(f"An error occurred: {e}")
return []


def get_metrics(loaded_dict: dict):
trq_1 = loaded_dict["tau"][:, 0]
trq_2 = loaded_dict["tau"][:, 1]
max_1 = np.max(np.abs(trq_1))
max_2 = np.max(np.abs(trq_2))

agr_max = max([max_1, max_2])

mean_1 = np.mean(np.abs(trq_1))
mean_2 = np.mean(np.abs(trq_2))

agr_mean = mean_1 + mean_2

max_diff_1 = np.max(np.abs(np.diff(trq_1)))
max_diff_2 = np.max(np.abs(np.diff(trq_2)))

agr_diff = max([max_diff_1, max_diff_2])
return agr_mean, agr_max, agr_diff, loaded_dict["Reward"], loaded_dict["X"]


def get_all_vector_metrics(directory):
sim_res_files = get_all_files_in_dir(directory)
sim_res = list(map(load_criterion_traj, sim_res_files))
agr_mean_list = []
agr_max_list = []
agr_diff_list = []
reword_list = []
param_x_list = []
for sim_res_i in sim_res:
agr_mean, agr_max, agr_diff, reword, param_x = get_metrics(sim_res_i)
agr_mean_list.append(agr_mean)
agr_max_list.append(agr_max)
agr_diff_list.append(agr_diff)
reword_list.append(reword)
param_x_list.append(param_x)
return agr_mean_list, agr_max_list, agr_diff_list, reword_list, param_x_list


PATH_CS = "results\\multi_opti_preset2\\topology_8_2024-05-30_10-40-12\\squat_compare"
agr_mean_list, agr_max_list, agr_diff_list, reword_list, param_x_list = get_all_vector_metrics(
PATH_CS)
save_p = Path(PATH_CS + "/" + "plots" + "/")
save_p.mkdir(parents=True, exist_ok=True)

plt.figure()
plt.scatter(np.array(reword_list)[:, 0], np.array(
reword_list)[:, 1], c=agr_mean_list, cmap="rainbow")
plt.colorbar()
plt.title("Mean torque in squat_sim on Pareto front")
plt.xlabel("ACC Capability")
plt.ylabel("HeavyLifting")

save_current1 = save_p / "Mean_torque_in_squat_sim_on_Pareto_front.svg"
save_current2 = save_p / "Mean_torque_in_squat_sim_on_Pareto_front.png"
plt.savefig(save_current1)
plt.savefig(save_current2)

plt.figure()
plt.scatter(np.array(reword_list)[:, 0], np.array(
reword_list)[:, 1], c=agr_max_list, cmap="rainbow")
plt.colorbar()
plt.title("Max torque in squat_sim on Pareto front")
plt.xlabel("ACC Capability")
plt.ylabel("HeavyLifting")

save_current1 = save_p / "Max_torque_in_squat_sim_on_Pareto_front.svg"
save_current2 = save_p / "Max_torque_in_squat_sim_on_Pareto_front.png"
plt.savefig(save_current1)
plt.savefig(save_current2)


plt.figure()
plt.scatter(np.array(reword_list)[:, 0], np.array(
reword_list)[:, 1], c=agr_diff_list, cmap="rainbow")
plt.colorbar()
plt.title("Max torque diff in squat_sim on Pareto front")
plt.xlabel("ACC Capability")
plt.ylabel("HeavyLifting")
plt.savefig("Max torque diff in squat_sim on Pareto front")
save_current1 = save_p / "Max_torque_diff_in_squat_sim_on_Pareto_front.svg"
save_current2 = save_p / "Max_torque_diff_in_squat_sim_on_Pareto_front.png"
plt.savefig(save_current1)
plt.savefig(save_current2)
plt.show()
24 changes: 24 additions & 0 deletions jmoves/apps/article/history_mupti_open.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
from auto_robot_design.optimization.analyze import get_optimizer_and_problem, get_pareto_sample_linspace, get_pareto_sample_histogram

optimizer, problem, res = get_optimizer_and_problem(
"results\\multi_opti_preset2\\topology_0_2024-05-29_18-48-58")
sample_x, sample_F = get_pareto_sample_linspace(res, 10)
sample_x2, sample_F2 = get_pareto_sample_histogram(res, 10)



save_p = Path(str(PATH_CS) + "/" + "plots")
save_p.mkdir(parents=True, exist_ok=True)

history_mean = np.array(optimizer.history["Mean"])

plt.figure()

plt.figure()
plt.scatter(sample_F2[:, 0], sample_F2[:, 1])
plt.title("from res2")
plt.show()
Loading

0 comments on commit 281da3b

Please sign in to comment.