Skip to content

Commit

Permalink
The first hybridisation (#83)
Browse files Browse the repository at this point in the history
Extended all schedulers with the ability of participate in population-based hybridisation schemes.

Implemented cyclic hybridisation scheme, made experiments.
  • Loading branch information
StannisMod authored May 13, 2024
1 parent dc365c7 commit 78debc1
Show file tree
Hide file tree
Showing 13 changed files with 566 additions and 61 deletions.
190 changes: 190 additions & 0 deletions experiments/hybridisation.ipynb

Large diffs are not rendered by default.

65 changes: 65 additions & 0 deletions experiments/hybridisation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
import json

import pathos
from tqdm import tqdm

import sampo.scheduler
from sampo.backend.multiproc import MultiprocessingComputationalBackend

from sampo.hybrid.population_tabu import TabuPopulationScheduler

from sampo.hybrid.cycle import CycleHybridScheduler
from sampo.api.genetic_api import ScheduleGenerationScheme
from sampo.scheduler import HEFTScheduler, HEFTBetweenScheduler, TopologicalScheduler, GeneticScheduler
from sampo.hybrid.population import HeuristicPopulationScheduler, GeneticPopulationScheduler

from sampo.generator.environment import get_contractor_by_wg
from sampo.generator import SimpleSynthetic

from sampo.base import SAMPO
from sampo.schemas import WorkGraph

def run_experiment(args):
graph_size, iteration = args

heuristics = HeuristicPopulationScheduler([HEFTScheduler(), HEFTBetweenScheduler(), TopologicalScheduler()])
# genetic1 = TabuPopulationScheduler()
genetic1 = GeneticPopulationScheduler(GeneticScheduler(mutate_order=0.2,
mutate_resources=0.2,
sgs_type=ScheduleGenerationScheme.Parallel))
genetic2 = GeneticPopulationScheduler(GeneticScheduler(mutate_order=0.001,
mutate_resources=0.001,
sgs_type=ScheduleGenerationScheme.Parallel))

hybrid_combine = CycleHybridScheduler(heuristics, [genetic1, genetic2], max_plateau_size=1)
hybrid_genetic1 = CycleHybridScheduler(heuristics, [genetic1], max_plateau_size=1)
hybrid_genetic2 = CycleHybridScheduler(heuristics, [genetic2], max_plateau_size=1)

wg = WorkGraph.load('wgs', f'{graph_size}_{iteration}')
contractors = [get_contractor_by_wg(wg)]

# SAMPO.backend = MultiprocessingComputationalBackend(n_cpus=10)
SAMPO.backend.cache_scheduler_info(wg, contractors)
SAMPO.backend.cache_genetic_info()

schedule_hybrid_combine = hybrid_combine.schedule(wg, contractors)
schedule_genetic1 = hybrid_genetic1.schedule(wg, contractors)
schedule_genetic2 = hybrid_genetic2.schedule(wg, contractors)

# print(f'Hybrid combine: {schedule_hybrid_combine.execution_time}')
# print(f'Scheduler 1 cycled: {schedule_genetic1.execution_time}')
# print(f'Scheduler 2 cycled: {schedule_genetic2.execution_time}')
return schedule_hybrid_combine.execution_time, schedule_genetic1.execution_time, schedule_genetic2.execution_time

if __name__ == '__main__':
arguments = [(graph_size, iteration) for graph_size in [100, 200, 300, 400, 500] for iteration in range(5)]
results = {graph_size: [] for graph_size in [100, 200, 300, 400, 500]}

with pathos.multiprocessing.Pool(processes=11) as p:
r = p.map(run_experiment, arguments)

for (graph_size, _), (combined_time, time1, time2) in zip(arguments, r):
results[graph_size].append((combined_time / time1, combined_time / time2))

with open('hybrid_results.json', 'w') as f:
json.dump(results, f)
20 changes: 20 additions & 0 deletions experiments/hybridisation_results_proc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
import json
from itertools import chain
from random import Random

import matplotlib.pyplot as plt

with open('hybrid_results.json', 'r') as f:
results = json.load(f)

results = {int(graph_size): [100 * (1 - res) for res in chain(*result)]
for graph_size, result in results.items()}
graph_sizes = results.keys()

rand = Random()

plt.title('Прирост качества планов\nот применения гибридизации', fontsize=16)
plt.xlabel('Размер графа')
plt.ylabel('% прироста качества относительно базового алгоритма')
plt.boxplot(results.values(), labels=graph_sizes)
plt.show()
14 changes: 14 additions & 0 deletions experiments/wg_generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
from sampo.generator import SimpleSynthetic

from tqdm import tqdm

ss = SimpleSynthetic(rand=231)

for size in range(100, 500 + 1, 100):
for i in tqdm(range(100)):
wg = ss.work_graph(bottom_border=size - 5,
top_border=size)
while not (size - 5 <= wg.vertex_count <= size):
wg = ss.work_graph(bottom_border=size - 20,
top_border=size)
wg.dump('wgs', f'{size}_{i}')
34 changes: 18 additions & 16 deletions sampo/backend/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from sampo.api.genetic_api import ChromosomeType, FitnessFunction, Individual, ScheduleGenerationScheme
from sampo.schemas import WorkGraph, Contractor, LandscapeConfiguration, Schedule, GraphNode, Time, WorkTimeEstimator
from sampo.schemas.schedule_spec import ScheduleSpec
from sampo.schemas.time_estimator import DefaultWorkEstimator

T = TypeVar('T')
R = TypeVar('R')
Expand All @@ -20,7 +21,7 @@ def __init__(self):
self._landscape = None
self._spec = None
self._rand = Random()
self._work_estimator = None
self._work_estimator = DefaultWorkEstimator()

# additional genetic parameters
self._toolbox = None
Expand All @@ -41,26 +42,27 @@ def __init__(self):
def cache_scheduler_info(self,
wg: WorkGraph,
contractors: list[Contractor],
landscape: LandscapeConfiguration,
spec: ScheduleSpec,
landscape: LandscapeConfiguration = LandscapeConfiguration(),
spec: ScheduleSpec = ScheduleSpec(),
rand: Random | None = None,
work_estimator: WorkTimeEstimator | None = None):
work_estimator: WorkTimeEstimator = DefaultWorkEstimator()):
...

@abstractmethod
def cache_genetic_info(self,
population_size: int,
mutate_order: float,
mutate_resources: float,
mutate_zones: float,
deadline: Time | None,
weights: list[int] | None,
init_schedules: dict[str, tuple[Schedule, list[GraphNode] | None, ScheduleSpec, float]],
assigned_parent_time: Time,
fitness_weights: tuple[int | float, ...],
sgs_type: ScheduleGenerationScheme,
only_lft_initialization: bool,
is_multiobjective: bool):
population_size: int = 50,
mutate_order: float = 0.1,
mutate_resources: float = 0.05,
mutate_zones: float = 0.05,
deadline: Time | None = None,
weights: list[int] | None = None,
init_schedules: dict[
str, tuple[Schedule, list[GraphNode] | None, ScheduleSpec, float]] = None,
assigned_parent_time: Time = Time(0),
fitness_weights: tuple[int | float, ...] = None,
sgs_type: ScheduleGenerationScheme = ScheduleGenerationScheme.Parallel,
only_lft_initialization: bool = False,
is_multiobjective: bool = False):
...

@abstractmethod
Expand Down
37 changes: 20 additions & 17 deletions sampo/backend/default.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,10 @@ def map(self, action: Callable[[T], R], values: list[T]) -> list[R]:
def cache_scheduler_info(self,
wg: WorkGraph,
contractors: list[Contractor],
landscape: LandscapeConfiguration,
spec: ScheduleSpec,
landscape: LandscapeConfiguration = LandscapeConfiguration(),
spec: ScheduleSpec = ScheduleSpec(),
rand: Random | None = None,
work_estimator: WorkTimeEstimator | None = None):
work_estimator: WorkTimeEstimator = DefaultWorkEstimator()):
self._wg = wg
self._contractors = contractors
self._landscape = landscape
Expand All @@ -31,18 +31,18 @@ def cache_scheduler_info(self,
self._toolbox = None

def cache_genetic_info(self,
population_size: int,
mutate_order: float,
mutate_resources: float,
mutate_zones: float,
deadline: Time | None,
weights: list[int] | None,
init_schedules: dict[str, tuple[Schedule, list[GraphNode] | None, ScheduleSpec, float]],
assigned_parent_time: Time,
fitness_weights: tuple[int | float, ...],
sgs_type: ScheduleGenerationScheme,
only_lft_initialization: bool,
is_multiobjective: bool):
population_size: int = 50,
mutate_order: float = 0.1,
mutate_resources: float = 0.05,
mutate_zones: float = 0.05,
deadline: Time | None = None,
weights: list[int] | None = None,
init_schedules: dict[str, tuple[Schedule, list[GraphNode] | None, ScheduleSpec, float]] = None,
assigned_parent_time: Time = Time(0),
fitness_weights: tuple[int | float, ...] = None,
sgs_type: ScheduleGenerationScheme = ScheduleGenerationScheme.Parallel,
only_lft_initialization: bool = False,
is_multiobjective: bool = False):
self._selection_size = population_size
self._mutate_order = mutate_order
self._mutate_resources = mutate_resources
Expand All @@ -61,8 +61,11 @@ def _ensure_toolbox_created(self):
if self._toolbox is None:
from sampo.scheduler.genetic.utils import init_chromosomes_f, create_toolbox_using_cached_chromosomes

init_chromosomes = init_chromosomes_f(self._wg, self._contractors, self._init_schedules,
self._landscape)
if self._init_schedules:
init_chromosomes = init_chromosomes_f(self._wg, self._contractors, self._init_schedules,
self._landscape)
else:
init_chromosomes = []

rand = self._rand or Random()
work_estimator = self._work_estimator or DefaultWorkEstimator()
Expand Down
37 changes: 21 additions & 16 deletions sampo/backend/multiproc.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,30 +115,35 @@ def _ensure_pool_created(self):
def cache_scheduler_info(self,
wg: WorkGraph,
contractors: list[Contractor],
landscape: LandscapeConfiguration,
spec: ScheduleSpec,
landscape: LandscapeConfiguration = LandscapeConfiguration(),
spec: ScheduleSpec = ScheduleSpec(),
rand: Random | None = None,
work_estimator: WorkTimeEstimator = DefaultWorkEstimator()):
super().cache_scheduler_info(wg, contractors, landscape, spec, rand, work_estimator)
self._pool = None

def cache_genetic_info(self,
selection_size: int,
mutate_order: float,
mutate_resources: float,
mutate_zones: float,
deadline: Time | None,
weights: list[int] | None,
init_schedules: dict[str, tuple[Schedule, list[GraphNode] | None, ScheduleSpec, float]],
assigned_parent_time: Time,
fitness_weights: tuple[int | float, ...],
sgs_type: ScheduleGenerationScheme,
only_lft_initialization: bool,
is_multiobjective: bool):
super().cache_genetic_info(selection_size, mutate_order, mutate_resources, mutate_zones, deadline,
population_size: int = 50,
mutate_order: float = 0.1,
mutate_resources: float = 0.05,
mutate_zones: float = 0.05,
deadline: Time | None = None,
weights: list[int] | None = None,
init_schedules: dict[
str, tuple[Schedule, list[GraphNode] | None, ScheduleSpec, float]] = None,
assigned_parent_time: Time = Time(0),
fitness_weights: tuple[int | float, ...] = None,
sgs_type: ScheduleGenerationScheme = ScheduleGenerationScheme.Parallel,
only_lft_initialization: bool = False,
is_multiobjective: bool = False):
super().cache_genetic_info(population_size, mutate_order, mutate_resources, mutate_zones, deadline,
weights, init_schedules, assigned_parent_time, fitness_weights, sgs_type,
only_lft_initialization, is_multiobjective)
self._init_chromosomes = init_chromosomes_f(self._wg, self._contractors, init_schedules, self._landscape)
if init_schedules:
self._init_chromosomes = init_chromosomes_f(self._wg, self._contractors, init_schedules,
self._landscape)
else:
self._init_chromosomes = []
self._pool = None

def compute_chromosomes(self, fitness: FitnessFunction, chromosomes: list[ChromosomeType]) -> list[float]:
Expand Down
Empty file added sampo/hybrid/__init__.py
Empty file.
71 changes: 71 additions & 0 deletions sampo/hybrid/cycle.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import numpy as np

from sampo.api.genetic_api import FitnessFunction, ChromosomeType, ScheduleGenerationScheme
from sampo.base import SAMPO
from sampo.hybrid.population import PopulationScheduler
from sampo.scheduler.genetic import TimeFitness
from sampo.scheduler.genetic.schedule_builder import create_toolbox
from sampo.schemas import WorkGraph, Contractor, Time, LandscapeConfiguration, Schedule
from sampo.schemas.schedule_spec import ScheduleSpec


class CycleHybridScheduler:
def __init__(self,
starting_scheduler: PopulationScheduler,
cycle_schedulers: list[PopulationScheduler],
fitness: FitnessFunction = TimeFitness(),
max_plateau_size: int = 2):
self._starting_scheduler = starting_scheduler
self._cycle_schedulers = cycle_schedulers
self._fitness = fitness
self._max_plateau_size = max_plateau_size

def _get_population_fitness(self, pop: list[ChromosomeType]):
# return best chromosome's fitness
return min(SAMPO.backend.compute_chromosomes(self._fitness, pop))

def _get_best_individual(self, pop: list[ChromosomeType]) -> ChromosomeType:
fitness = SAMPO.backend.compute_chromosomes(self._fitness, pop)
return pop[np.argmin(fitness)]

def run(self,
wg: WorkGraph,
contractors: list[Contractor],
spec: ScheduleSpec = ScheduleSpec(),
assigned_parent_time: Time = Time(0),
landscape: LandscapeConfiguration = LandscapeConfiguration()) -> ChromosomeType:
pop = self._starting_scheduler.schedule([], wg, contractors, spec, assigned_parent_time, landscape)

cur_fitness = Time.inf().value
plateau_steps = 0

while True:
pop_fitness = self._get_population_fitness(pop)
if pop_fitness == cur_fitness:
plateau_steps += 1
if plateau_steps == self._max_plateau_size:
break
else:
plateau_steps = 0
cur_fitness = pop_fitness

for scheduler in self._cycle_schedulers:
pop = scheduler.schedule(pop, wg, contractors, spec, assigned_parent_time, landscape)

return self._get_best_individual(pop)

def schedule(self,
wg: WorkGraph,
contractors: list[Contractor],
spec: ScheduleSpec = ScheduleSpec(),
assigned_parent_time: Time = Time(0),
sgs_type: ScheduleGenerationScheme = ScheduleGenerationScheme.Parallel,
landscape: LandscapeConfiguration = LandscapeConfiguration()) -> Schedule:
best_ind = self.run(wg, contractors, spec, assigned_parent_time, landscape)

toolbox = create_toolbox(wg=wg, contractors=contractors, landscape=landscape,
assigned_parent_time=assigned_parent_time, spec=spec,
sgs_type=sgs_type)
node2swork = toolbox.chromosome_to_schedule(best_ind)[0]

return Schedule.from_scheduled_works(node2swork.values(), wg)
54 changes: 54 additions & 0 deletions sampo/hybrid/population.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
from abc import ABC, abstractmethod

from sampo.api.genetic_api import ChromosomeType, Individual
from sampo.scheduler import GeneticScheduler, Scheduler
from sampo.scheduler.genetic.schedule_builder import create_toolbox
from sampo.schemas import WorkGraph, Contractor, Time, LandscapeConfiguration
from sampo.schemas.schedule_spec import ScheduleSpec


class PopulationScheduler(ABC):

@abstractmethod
def schedule(self,
initial_population: list[ChromosomeType],
wg: WorkGraph,
contractors: list[Contractor],
spec: ScheduleSpec = ScheduleSpec(),
assigned_parent_time: Time = Time(0),
landscape: LandscapeConfiguration = LandscapeConfiguration()) -> list[ChromosomeType]:
...


class GeneticPopulationScheduler(PopulationScheduler):
def __init__(self, genetic: GeneticScheduler):
self._genetic = genetic

def schedule(self,
initial_population: list[ChromosomeType],
wg: WorkGraph,
contractors: list[Contractor],
spec: ScheduleSpec = ScheduleSpec(),
assigned_parent_time: Time = Time(0),
landscape: LandscapeConfiguration = LandscapeConfiguration()) -> list[ChromosomeType]:
return self._genetic.upgrade_pop(wg, contractors, initial_population, spec,
assigned_parent_time, landscape=landscape)


class HeuristicPopulationScheduler(PopulationScheduler):
def __init__(self, schedulers: list[Scheduler]):
self._schedulers = schedulers

def schedule(self,
initial_population: list[ChromosomeType],
wg: WorkGraph,
contractors: list[Contractor],
spec: ScheduleSpec = ScheduleSpec(),
assigned_parent_time: Time = Time(0),
landscape: LandscapeConfiguration = LandscapeConfiguration()) -> list[ChromosomeType]:
toolbox = create_toolbox(wg=wg, contractors=contractors,
spec=spec, assigned_parent_time=assigned_parent_time,
landscape=landscape)
return [toolbox.Individual(toolbox.schedule_to_chromosome(schedule=schedule))
for scheduler in self._schedulers
for schedule in scheduler.schedule(wg, contractors, spec, landscape=landscape)]
Loading

0 comments on commit 78debc1

Please sign in to comment.