Skip to content

深圳大学X腾讯开悟教学项目:论文阅读清单

Notifications You must be signed in to change notification settings

ZhiyeTang/Kaiwu-Paper-List

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 

Repository files navigation

深圳大学X腾讯开悟教学项目:论文阅读清单

第一方论文

[1] Wu, Bin. "Hierarchical macro strategy model for moba game ai." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01. 2019. (AAAI 2019)

本文提出了一种层次(Hierachical)强化学习模型,智能体首先通过模仿学习的方式制定宏观策略(Macro Strategy),再使用强化学习的方式学习微观策略(Micro Strategy)。

[2] Ye, Deheng, et al. "Supervised learning achieves human-level performance in moba games: A case study of honor of kings." IEEE Transactions on Neural Networks and Learning Systems (2020). (TNNLS 2020)

本文将宏观策略与微观策略进行了进一步的结合,使用监督学习的方式令智能体达到了比人类玩家更优秀的水平。

[3] Ye, Deheng, et al. "Mastering complex control in moba games with deep reinforcement learning." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 04. 2020. (AAAI 2020)

详细介绍了代码包中使用的强化学习算法的设计细节。

[4] Ye, Deheng, et al. "Towards playing full moba games with deep reinforcement learning." Advances in Neural Information Processing Systems 33 (2020): 621-632. (NeurIPS 2020)

基于强化学习,引入策略蒸馏(Policy Distillation)的思想将多个专家策略的知识压缩到一个模型上,让一个模型学会多个英雄的玩法。

[5] Gao, Yiming, et al. "Learning Diverse Policies in MOBA Games via Macro-Goals." Advances in Neural Information Processing Systems 34 (2021): 16171-16182. (NeurIPS 2021)

本文设计了一个元控制器(Meta-Controller)和宏观策略引导(Macro-Goals Guided,MGG)的训练框架。元控制器通过有监督学习人类专家的操作意图,然后再放置到强化学习框架中进行进一步的强化学习。

第三方论文

[1] Jiang, Daniel R., Emmanuel Ekwedike, and Han Liu. "Feedback-Based Tree Search for Reinforcement Learning." ICML. 2018. (ICML 2018)

[2] Wang, Qing, et al. "Exponentially weighted imitation learning for batched historical data." Advances in Neural Information Processing Systems 31 (2018). (NeurIPS 2018)

[3] Eisenach, Carson, et al. "Marginal policy gradients: A unified family of estimators for bounded action spaces with applications." 7th International Conference on Learning Representations, ICLR 2019. 2019. (ICLR 2019)

[4] Cheng, Ziqiang, et al. "What makes a good team? a large-scale study on the effect of team composition in honor of kings." The World Wide Web Conference. 2019. (WWW 2019)

[5] Wei, Hua, et al. "Boosting Offline Reinforcement Learning with Residual Generative Modeling." 30th International Joint Conference on Artificial Intelligence, IJCAI 2021. International Joint Conferences on Artificial Intelligence, 2021. (IJCAI 2021)

About

深圳大学X腾讯开悟教学项目:论文阅读清单

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published