The shortest path tour problem aims to find the shortest path that traverses multiple disjoint node subsets in a given order.
Variables | Meaning |
---|---|
network | Dictionary, {node1: {node2: length, node3: length, ...}, ...} |
node_subset | List, [[subset1], [subset2], ...] |
source | List, the source nodes of this subproblem of SPTP |
destination | List, the destination nodes of this subproblem of SPTP |
init_time | List, the initial time that should generate initial ripples at source nodes |
init_radius | List, the initial radius of initial ripples at source nodes |
nn | The number of nodes |
neighbor | Dictionary, {node1: [the neighbor nodes of node1], ...} |
v | The ripple-spreading speed (i.e., the minimum length of arcs) |
t | The simulated time index |
nr | The number of ripples - 1 |
epicenter_set | List, the epicenter node of the ith ripple is epicenter_set[i] |
path_set | List, the path of the ith ripple from the source node to node i is path_set[i] |
radius_set | List, the radius of the ith ripple is radius_set[i] |
active_set | List, active_set contains all active ripples |
Omega | Dictionary, Omega[n] = i denotes that ripple i is generated at node n |
if __name__ == '__main__':
test_network = {
0: {1: 2, 2: 3, 3: 3},
1: {0: 2, 3: 2},
2: {0: 3, 3: 3},
3: {0: 3, 1: 2, 2: 3, 4: 2, 5: 3, 6: 3},
4: {3: 2, 6: 2},
5: {3: 3, 6: 3},
6: {3: 3, 4: 2, 5: 3},
}
subset = [[0], [1, 3], [4, 5], [6]]
print(main(test_network, subset))
{'path': [0, 3, 4, 6], 'length': 7}
The shortest path tour problem aims to find the shortest path that traverses multiple disjoint node subsets in a given order. The many-to-many shortest path tour problem has multiple sources and destinations. It aims to determine the shortest path tour for every source node to any one of the destination nodes.
Variables | Meaning |
---|---|
network | Dictionary, {node1: {node2: length, node3: length, ...}, ...} |
node_subset | List, [[subset1], [subset2], ...] |
source | List, the source nodes of this subproblem of SPTP |
destination | List, the destination nodes of this subproblem of SPTP |
init_time | List, the initial time that should generate initial ripples at source nodes |
init_radius | List, the initial radius of initial ripples at source nodes |
nn | The number of nodes |
neighbor | Dictionary, {node1: [the neighbor nodes of node1], ...} |
v | The ripple-spreading speed (i.e., the minimum length of arcs) |
t | The simulated time index |
nr | The number of ripples - 1 |
epicenter_set | List, the epicenter node of the ith ripple is epicenter_set[i] |
path_set | List, the path of the ith ripple from the source node to node i is path_set[i] |
radius_set | List, the radius of the ith ripple is radius_set[i] |
active_set | List, active_set contains all active ripples |
Omega | Dictionary, Omega[n] = i denotes that ripple i is generated at node n |
if __name__ == '__main__':
test_network = {
0: {1: 2, 2: 3, 3: 3},
1: {0: 2, 3: 2},
2: {0: 3, 3: 3},
3: {0: 3, 1: 2, 2: 3, 4: 2, 5: 3, 6: 3},
4: {3: 2, 6: 2},
5: {3: 3, 6: 3},
6: {3: 3, 4: 2, 5: 3},
}
subset = [[0, 2], [1, 3], [5, 6]]
print(main(test_network, subset))
{
0: {'path': [0, 3, 5], 'length': 6},
2: {'path': [2, 3, 5], 'length': 6},
}
The shortest path tour problem (SPTP) aims to find the shortest path that traverses multiple disjoint node subsets in a given order. The k-SPTP aims to find the k shortest paths for the SPTP.
Variables | Meaning |
---|---|
network | Dictionary, {node1: {node2: length, node3: length, ...}, ...} |
node_subset | List, [[subset1], [subset2], ...] |
source | List, the source nodes of this subproblem of SPTP |
destination | List, the destination nodes of this subproblem of SPTP |
init_time | List, the initial time that should generate initial ripples at source nodes |
init_radius | List, the initial radius of initial ripples at source nodes |
init_path | List, the initial path for each initial ripple |
k | The k shortest paths |
nn | The number of nodes |
neighbor | Dictionary, {node1: [the neighbor nodes of node1], ...} |
v | The ripple-spreading speed (i.e., the minimum length of arcs) |
t | The simulated time index |
nr | The number of ripples - 1 |
epicenter_set | List, the epicenter node of the ith ripple is epicenter_set[i] |
path_set | List, the path of the ith ripple from the source node to node i is path_set[i] |
radius_set | List, the radius of the ith ripple is radius_set[i] |
active_set | List, active_set contains all active ripples |
Omega | Dictionary, Omega[n] = i denotes that ripple i is generated at node n |
if __name__ == '__main__':
# Example 1
test_network = {
0: {1: 3, 2: 3},
1: {0: 3, 2: 3, 3: 5},
2: {0: 3, 1: 3, 3: 4},
3: {1: 5, 2: 4},
}
subset = [[0], [1], [3]]
print(main(test_network, subset, 2))
[
{'path': [0, 1, 3], 'length': 8},
{'path': [0, 1, 2, 3], 'length': 10}
]
This example aims to find the 8 shortest paths for the k-SPTP on a randomly generated network with 49 nodes.
if __name__ == '__main__':
# Example 2
def generate_network():
x = [] # x坐标
y = [] # y坐标
T = [[0], [11, 12, 18, 19], [29, 30, 36, 37], [48]]
connect_list = [0, 1, 2, 3, 4, 5, 6, 7, 13, 14, 20, 21, 27, 28, 34, 35, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]
for i in range(7):
for j in range(7):
x.append(i * 10)
y.append(j * 10)
for i in range(1, 49):
x[i] = x[i] + random.uniform(-2, 2)
y[i] = y[i] + random.uniform(-2, 2)
x1 = []
y1 = []
x2 = []
y2 = []
x3 = []
y3 = []
for i in range(49):
if i not in T[1] and i not in T[2]:
x1.append(x[i])
y1.append(y[i])
for i in range(len(T[1])):
x2.append(x[T[1][i]])
y2.append(y[T[1][i]])
for i in range(len(T[2])):
x3.append(x[T[2][i]])
y3.append(y[T[2][i]])
adjacent_matrix = []
for i in range(49):
adjacent_matrix.append([])
for j in range(49):
if i in connect_list and j in connect_list and math.sqrt((x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2) < 15:
adjacent_matrix[i].append(1)
else:
adjacent_matrix[i].append(0)
p1 = 0.7
p2 = 0.05
p3 = 0.03
for i in range(49):
for j in range(49):
if (abs(i - j) == 1 or abs(i - j) == 7) and math.sqrt(
(x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2) < 20: # 横或竖相连
if random.random() < p1:
adjacent_matrix[i][j] = 1
adjacent_matrix[j][i] = 1
if (abs(i - j) == 8 or abs(i - j) == 6) and math.sqrt(
(x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2) < 30: # 对角线相连
if random.random() < p2:
adjacent_matrix[i][j] = 1
adjacent_matrix[j][i] = 1
if (abs(i - j) == 2 or abs(i - j) == 14) and math.sqrt((x[i] - x[j]) ** 2 + (
y[i] - y[j]) ** 2) < 30 and i in connect_list and j in connect_list: # 两横线或两竖线相连
if random.random() < p3:
adjacent_matrix[i][j] = 1
adjacent_matrix[j][i] = 1
for i in range(1, len(T) - 1):
for j in T[i]:
adjacent_matrix[j][j + 7] = 1
adjacent_matrix[j + 7][j] = 1
adjacent_matrix[j][j - 7] = 1
adjacent_matrix[j - 7][j] = 1
adjacent_matrix[j][j + 1] = 1
adjacent_matrix[j + 1][j] = 1
adjacent_matrix[j][j - 1] = 1
adjacent_matrix[j - 1][j] = 1
network = {}
for i in range(49):
network[i] = {}
for j in range(49):
if i != j and adjacent_matrix[i][j] != 0:
temp_dist = math.sqrt((x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2)
network[i][j] = temp_dist
return x, y, network
def draw_path(x, y, network, subset, path, length, ind):
x1 = []
y1 = []
x2 = []
y2 = []
x3 = []
y3 = []
for i in range(len(x)):
if i in subset[1]:
x2.append(x[i])
y2.append(y[i])
elif i in subset[2]:
x3.append(x[i])
y3.append(y[i])
else:
x1.append(x[i])
y1.append(y[i])
plt.figure(dpi=600)
for i in range(48):
for j in range(i, 49):
if j in network[i].keys():
temp_x = [x[i], x[j]]
temp_y = [y[i], y[j]]
i_index = 49
j_index = 0
if i in path and j in path:
i_index = path.index(i)
j_index = path.index(j)
if abs(i_index - j_index) == 1 or (j_index - 1 >= 0 and path[j_index - 1] == i) or (
i_index + 1 < len(path) and path[i_index + 1] == j):
plt.plot(temp_x, temp_y, 'black', linewidth=2)
else:
plt.plot(temp_x, temp_y, 'springgreen', linewidth=2)
plt.scatter(x1, y1, c='springgreen', s=150)
plt.scatter(x2, y2, c='darkred', alpha=1, s=150)
plt.scatter(x3, y3, c='darkblue', alpha=1, s=150)
plt.title(str(ind) + ', length = ' + str(round(length, 5)))
plt.xticks(())
plt.yticks(())
plt.savefig('D://' + str(ind) + '.png')
plt.show()
x, y, test_network = generate_network()
subset = [[0], [11, 12, 18, 19], [29, 30, 36, 37], [48]]
result = main(test_network, subset, 8)
print(result)
for i in range(len(result)):
draw_path(x, y, test_network, subset, result[i]['path'], result[i]['length'], i + 1)
[
{'path': [0, 1, 2, 10, 17, 18, 17, 24, 23, 30, 31, 32, 33, 34, 41, 48], 'length': 150.1495608090849},
{'path': [0, 1, 2, 10, 17, 18, 17, 24, 23, 30, 37, 44, 45, 46, 47, 48], 'length': 150.63572706262775},
{'path': [0, 1, 2, 10, 17, 18, 25, 32, 31, 30, 31, 32, 33, 34, 41, 48], 'length': 151.2016145482568},
{'path': [0, 1, 8, 9, 17, 18, 17, 24, 23, 30, 31, 32, 33, 34, 41, 48], 'length': 151.27653543201578},
{'path': [0, 1, 2, 10, 17, 18, 17, 24, 23, 30, 31, 32, 39, 40, 47, 48], 'length': 151.29119265478346},
{'path': [0, 1, 2, 10, 11, 10, 17, 24, 23, 30, 31, 32, 33, 34, 41, 48], 'length': 151.44287618906438},
{'path': [0, 1, 2, 10, 17, 18, 25, 32, 31, 30, 37, 44, 45, 46, 47, 48], 'length': 151.68778080179965},
{'path': [0, 1, 8, 9, 17, 18, 17, 24, 23, 30, 37, 44, 45, 46, 47, 48], 'length': 151.76270168555862}
]