Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add reparameterization for yolov7-tiny #2016

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 56 additions & 2 deletions tools/reparameterization.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -500,13 +500,67 @@
"torch.save(ckpt, 'cfg/deploy/yolov7-e6e.pt')\n"
]
},
{
"cell_type": "markdown",
"id": "1a1cbfa1",
"metadata": {},
"source": [
"## YOLOv7-tiny reparameterization"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63a62625",
"id": "aebfde10",
"metadata": {},
"outputs": [],
"source": []
"source": [
"# import\n",
"from copy import deepcopy\n",
"from models.yolo import Model\n",
"import torch\n",
"from utils.torch_utils import select_device, is_parallel\n",
"import yaml\n",
"\n",
"device = select_device('0', batch_size=1)\n",
"# model trained by cfg/training/*.yaml\n",
"ckpt = torch.load('cfg/training/yolov7-tiny_training.pt', map_location=device)\n",
"# reparameterized model in cfg/deploy/*.yaml\n",
"model = Model('cfg/deploy/yolov7-tiny.yaml', ch=3, nc=80).to(device)\n",
"\n",
"with open('cfg/deploy/yolov7-tiny.yaml') as f:\n",
" yml = yaml.load(f, Loader=yaml.SafeLoader)\n",
"anchors = len(yml['anchors'][0]) // 2\n",
"\n",
"# copy intersect weights\n",
"state_dict = ckpt['model'].float().state_dict()\n",
"exclude = []\n",
"intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}\n",
"model.load_state_dict(intersect_state_dict, strict=False)\n",
"model.names = ckpt['model'].names\n",
"model.nc = ckpt['model'].nc\n",
"\n",
"# reparametrized YOLOR\n",
"for i in range((model.nc+5)*anchors):\n",
" model.state_dict()['model.77.m.0.weight'].data[i, :, :, :] *= state_dict['model.77.im.0.implicit'].data[:, i, : :].squeeze()\n",
" model.state_dict()['model.77.m.1.weight'].data[i, :, :, :] *= state_dict['model.77.im.1.implicit'].data[:, i, : :].squeeze()\n",
" model.state_dict()['model.77.m.2.weight'].data[i, :, :, :] *= state_dict['model.77.im.2.implicit'].data[:, i, : :].squeeze()\n",
"model.state_dict()['model.77.m.0.bias'].data += state_dict['model.77.m.0.weight'].mul(state_dict['model.77.ia.0.implicit']).sum(1).squeeze()\n",
"model.state_dict()['model.77.m.1.bias'].data += state_dict['model.77.m.1.weight'].mul(state_dict['model.77.ia.1.implicit']).sum(1).squeeze()\n",
"model.state_dict()['model.77.m.2.bias'].data += state_dict['model.77.m.2.weight'].mul(state_dict['model.77.ia.2.implicit']).sum(1).squeeze()\n",
"model.state_dict()['model.77.m.0.bias'].data *= state_dict['model.77.im.0.implicit'].data.squeeze()\n",
"model.state_dict()['model.77.m.1.bias'].data *= state_dict['model.77.im.1.implicit'].data.squeeze()\n",
"model.state_dict()['model.77.m.2.bias'].data *= state_dict['model.77.im.2.implicit'].data.squeeze()\n",
"\n",
"# model to be saved\n",
"ckpt = {'model': deepcopy(model.module if is_parallel(model) else model).half(),\n",
" 'optimizer': None,\n",
" 'training_results': None,\n",
" 'epoch': -1}\n",
"\n",
"# save reparameterized model\n",
"torch.save(ckpt, 'cfg/deploy/yolov7-tiny.pt')"
]
}
],
"metadata": {
Expand Down