Convert LabelMe format into Ultralytics Yolo format for instance segmentation.
You can install labelme-to-yolo
from Pypi. It's going to install the library itself and its prerequisites as well.
pip install labelme2yolo
You can install labelme2yolo
from its source code.
git clone https://github.com/Tlaloc-Es/labelme-to-yolo.git
cd labelme2yolo
pip install -e .
First of all, make your dataset with LabelMe, after that call to the following command
labelme2yolo --source-path /labelme/dataset --output-path /another/path
The arguments are:
--source-path
: That indicates the path where are the json output of LabelMe and their images, both will have been in the same folder--output-path
: The path where you will save the converted files and a copy of the images following the yolov7 folder estructure
If you execute the following command:
labelme2yolo --source-path /labelme/dataset --output-path /another/datasets
You will get something like this
datasets
├── images
│ ├── train
│ │ ├── img_1.jpg
│ │ ├── img_2.jpg
│ │ ├── img_3.jpg
│ │ ├── img_4.jpg
│ │ └── img_5.jpg
│ └── val
│ ├── img_6.jpg
│ └── img_7.jpg
├── labels
│ ├── train
│ │ ├── img_1.txt
│ │ ├── img_2.txt
│ │ ├── img_3.txt
│ │ ├── img_4.txt
│ │ └── img_5.txt
│ └── val
│ ├── img_6.txt
│ └── img_7.txt
├── labels.txt
├── test.txt
├── train.txt
└── project.yml
If you want to contribute you can make a donation at https://www.buymeacoffee.com/tlaloc, thanks in advance