Skip to content

Case Study in ranking U.S. cities based on a single linear combination of rating variables. Dimensionality techniques used in the analysis are Principal Component Analysis (PCA), Factor Analysis (FA), Canonical Correlation Analysis (CCA)

Notifications You must be signed in to change notification settings

TatevKaren/multivariate-statistics

Repository files navigation

Case Study in Ranking US Cities

Paper: MultivariateStatistics_CaseStudy_PCA_FA_CCA.pdf Code: MultivariateStat_PCA_FA_CCA_code.R

Case Study in ranking U.S. cities based on a single linear combination of rating variables. Dimensionality techniques used in the analysis are Principal Component Analysis (PCA), Factor Analysis (FA), Canonical Correlation Analysis (CCA).

Principal Component Analysis (PCA) Screenshots

Biplot with scaled data where yoou can observe that Crime and Education have the smallest margins and the remaining variables show substantial variations. First three principal components explain 63.10% of the total variation in data. Applying the ”elbow rule” it can be seen that one can optimally retain 3 components.

Principle Component Analysis Principle Component Analysis: Elbow Rule % Variation Explained

Canonical Correlation Analysis (CCA) Screenshots

Figures showing clear correlation between X and Y scores for the first canonical correlation which is not the case for the second factor, where one can observe some correlation but not significant. This shows that the first canonical correlation is important but second one is not.

Canonical Correlation Plot 2 Canonical Correlation Plot 1

About

Case Study in ranking U.S. cities based on a single linear combination of rating variables. Dimensionality techniques used in the analysis are Principal Component Analysis (PCA), Factor Analysis (FA), Canonical Correlation Analysis (CCA)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages