Skip to content

Commit

Permalink
Merge branch 'master' into careful-event-affects
Browse files Browse the repository at this point in the history
  • Loading branch information
BenChung committed Oct 25, 2024
2 parents 7f7f65c + b60c152 commit 088f652
Show file tree
Hide file tree
Showing 37 changed files with 1,203 additions and 121 deletions.
11 changes: 8 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
name = "ModelingToolkit"
uuid = "961ee093-0014-501f-94e3-6117800e7a78"
authors = ["Yingbo Ma <[email protected]>", "Chris Rackauckas <[email protected]> and contributors"]
version = "9.46.1"
version = "9.47.0"

[deps]
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
ArrayInterface = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
BlockArrays = "8e7c35d0-a365-5155-bbbb-fb81a777f24e"
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
CommonSolve = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2"
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Expand Down Expand Up @@ -61,21 +62,24 @@ Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"
BifurcationKit = "0f109fa4-8a5d-4b75-95aa-f515264e7665"
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
DeepDiffs = "ab62b9b5-e342-54a8-a765-a90f495de1a6"
HomotopyContinuation = "f213a82b-91d6-5c5d-acf7-10f1c761b327"
LabelledArrays = "2ee39098-c373-598a-b85f-a56591580800"

[extensions]
MTKBifurcationKitExt = "BifurcationKit"
MTKChainRulesCoreExt = "ChainRulesCore"
MTKDeepDiffsExt = "DeepDiffs"
MTKHomotopyContinuationExt = "HomotopyContinuation"
MTKLabelledArraysExt = "LabelledArrays"

[compat]
AbstractTrees = "0.3, 0.4"
ArrayInterface = "6, 7"
BifurcationKit = "0.3"
BifurcationKit = "0.4"
BlockArrays = "1.1"
ChainRulesCore = "1"
Combinatorics = "1"
CommonSolve = "0.2.4"
Compat = "3.42, 4"
ConstructionBase = "1"
DataInterpolations = "6.4"
Expand All @@ -97,6 +101,7 @@ ForwardDiff = "0.10.3"
FunctionWrappers = "1.1"
FunctionWrappersWrappers = "0.1"
Graphs = "1.5.2"
HomotopyContinuation = "2.11"
InteractiveUtils = "1"
JuliaFormatter = "1.0.47"
JumpProcesses = "9.13.1"
Expand Down Expand Up @@ -126,7 +131,7 @@ SpecialFunctions = "0.7, 0.8, 0.9, 0.10, 1.0, 2"
StaticArrays = "0.10, 0.11, 0.12, 1.0"
SymbolicIndexingInterface = "0.3.31"
SymbolicUtils = "3.7"
Symbolics = "6.14"
Symbolics = "6.15.2"
URIs = "1"
UnPack = "0.1, 1.0"
Unitful = "1.1"
Expand Down
4 changes: 3 additions & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
[deps]
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
BifurcationKit = "0f109fa4-8a5d-4b75-95aa-f515264e7665"
DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0"
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
Expand All @@ -23,7 +24,8 @@ Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"

[compat]
BenchmarkTools = "1.3"
BifurcationKit = "0.3"
BifurcationKit = "0.4"
DataInterpolations = "6.5"
DifferentialEquations = "7.6"
Distributions = "0.25"
Documenter = "1"
Expand Down
3 changes: 2 additions & 1 deletion docs/pages.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,8 @@ pages = [
"tutorials/parameter_identifiability.md",
"tutorials/bifurcation_diagram_computation.md",
"tutorials/SampledData.md",
"tutorials/domain_connections.md"],
"tutorials/domain_connections.md",
"tutorials/callable_params.md"],
"Examples" => Any[
"Basic Examples" => Any["examples/higher_order.md",
"examples/spring_mass.md",
Expand Down
26 changes: 15 additions & 11 deletions docs/src/basics/MTKLanguage.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ end
v_array(t)[1:N, 1:M]
v_for_defaults(t)
end
@extend ModelB(; p1)
@extend ModelB(p1 = 1)
@components begin
model_a = ModelA(; k_array)
model_array_a = [ModelA(; k = i) for i in 1:N]
Expand Down Expand Up @@ -149,14 +149,18 @@ julia> ModelingToolkit.getdefault(model_c1.v)

#### `@extend` begin block

- Partial systems can be extended in a higher system as `@extend PartialSystem(; kwargs)`.
- Keyword arguments pf partial system in the `@extend` definition are added as the keyword arguments of the base system.
- Note that in above example, `p1` is promoted as an argument of `ModelC`. Users can set the value of `p1`. However, as `p2` isn't listed in the model definition, its initial guess can't be specified while creating an instance of `ModelC`.
Partial systems can be extended in a higher system in two ways:

```julia
julia> @mtkbuild model_c2 = ModelC(; p1 = 2.0)
- `@extend PartialSystem(var1 = value1)`

+ This is the recommended way of extending a base system.
+ The default values for the arguments of the base system can be declared in the `@extend` statement.
+ Note that all keyword arguments of the base system are added as the keyword arguments of the main system.

```
- `@extend var_to_unpack1, var_to_unpack2 = partial_sys = PartialSystem(var1 = value1)`

+ In this method: explicitly list the variables that should be unpacked, provide a name for the partial system and declare the base system.
+ Note that only the arguments listed out in the declaration of the base system (here: `var1`) are added as the keyword arguments of the higher system.

#### `@components` begin block

Expand Down Expand Up @@ -325,11 +329,11 @@ For example, the structure of `ModelC` is:
julia> ModelC.structure
Dict{Symbol, Any} with 10 entries:
:components => Any[Union{Expr, Symbol}[:model_a, :ModelA], Union{Expr, Symbol}[:model_array_a, :ModelA, :(1:N)], Union{Expr, Symbol}[:model_array_b, :ModelA, :(1:N)]]
:variables => Dict{Symbol, Dict{Symbol, Any}}(:v=>Dict(:default=>:v_var, :type=>Real), :v_for_defaults=>Dict(:type=>Real))
:variables => Dict{Symbol, Dict{Symbol, Any}}(:v=>Dict(:default=>:v_var, :type=>Real), :v_array=>Dict(:value=>nothing, :type=>Real, :size=>(:N, :M)), :v_for_defaults=>Dict(:type=>Real))
:icon => URI("https://github.com/SciML/SciMLDocs/blob/main/docs/src/assets/logo.png")
:kwargs => Dict{Symbol, Dict}(:f => Dict(:value => :sin), :N => Dict(:value => 2), :M => Dict(:value => 3), :v => Dict{Symbol, Any}(:value => :v_var, :type => Real), :v_for_defaults => Dict{Symbol, Union{Nothing, DataType}}(:value => nothing, :type => Real), :p1 => Dict(:value => nothing)),
:structural_parameters => Dict{Symbol, Dict}(:f => Dict(:value => :sin), :N => Dict(:value => 2), :M => Dict(:value => 3))
:independent_variable => t
:kwargs => Dict{Symbol, Dict}(:f=>Dict(:value=>:sin), :p2=>Dict(:value=>NoValue()), :N=>Dict(:value=>2), :M=>Dict(:value=>3), :v=>Dict{Symbol, Any}(:value=>:v_var, :type=>Real), :v_array=>Dict{Symbol, Any}(:value=>nothing, :type=>Real, :size=>(:N, :M)), :v_for_defaults=>Dict{Symbol, Union{Nothing, DataType}}(:value=>nothing, :type=>Real), :p1=>Dict(:value=>1))
:structural_parameters => Dict{Symbol, Dict}(:f=>Dict(:value=>:sin), :N=>Dict(:value=>2), :M=>Dict(:value=>3))
:independent_variable => :t
:constants => Dict{Symbol, Dict}(:c=>Dict{Symbol, Any}(:value=>1, :type=>Int64, :description=>"Example constant."))
:extend => Any[[:p2, :p1], Symbol("#mtkmodel__anonymous__ModelB"), :ModelB]
:defaults => Dict{Symbol, Any}(:v_for_defaults=>2.0)
Expand Down
91 changes: 91 additions & 0 deletions docs/src/tutorials/callable_params.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Callable parameters and interpolating data

ModelingToolkit.jl allows creating parameters that represent functions to be called. This
is especially useful for including interpolants and/or lookup tables inside ODEs. In this
tutorial we will create an `ODESystem` which employs callable parameters to interpolate data
inside an ODE and go over the various syntax options and their implications.

## Callable parameter syntax

The syntax for callable parameters declared via `@parameters` must be one of the following

1. `(fn::FType)(..)`
2. `fn(::argType1, ::argType2, ...)`

In the first case, the parameter is callable with any number/combination of arguments, and
has a type of `FType` (the callable must be a subtype of `FType`). In the second case,
the parameter is callable with as many arguments as declared, and all must match the
declared types.

By default, the return type of the callable symbolic is inferred to be `Real`. To change
this, a `::retType` annotation can be added at the end.

To declare a function that returns an array of values, the same array syntax can be used
as for normal variables:

```julia
@parameters (foo::FType)(..)[1:3]::retType
@parameters foo(::argType1, ::argType2)[1:3]::retType
```

`retType` here is the `eltype` of the returned array.

## Storage of callable parameters

Callable parameters declared with the `::FType` syntax will be stored in a `Vector{FType}`.
Thus, if `FType` is non-concrete, the buffer will also be non-concrete. This is sometimes
necessary to allow the value of the callable to be switched out for a different type without
rebuilding the model. Typically this syntax is preferable when `FType` is concrete or
a small union.

Callable parameters declared with the `::argType1, ...` syntax will be stored in a
`Vector{FunctionWrappers.FunctionWrapper{retType, Tuple{argType1, ...}}}`. This suffers
the small overhead of a `FunctionWrapper` and restricts the signature of the callable,
symbolic, but allows storing the parameter in a type-stable manner and swapping it out.
This is preferable when the values that the callable can take do not share a common
subtype. For example, when a callable can represent the activation of a neural network
and can be `tanh`, `sigmoid`, etc. which have a common ancestor of `Function`.

If both `::FType` and `::argType`s are specified, `::FType` takes priority. For example,

```julia
@parameters (p::LinearInterpolation)(::Real)
```

`p` will be stored in a `Vector{LinearInterpolation}`. If `::LinearInterpolation` was not
specified, it would be stored in a `Vector{FunctionWrapper{Real, Tuple{Real}}}`.

## Example using interpolations

```@example callable
using ModelingToolkit
using OrdinaryDiffEq
using DataInterpolations
using ModelingToolkit: t_nounits as t, D_nounits as D
ts = collect(0.0:0.1:10.0)
spline = LinearInterpolation(ts .^ 2, ts)
Tspline = typeof(spline)
@variables x(t)
@parameters (interp::Tspline)(..)
@mtkbuild sys = ODESystem(D(x) ~ interp(t), t)
```

The derivative of `x` is obtained via an interpolation from DataInterpolations.jl. Note
the parameter syntax. The `(..)` marks the parameter as callable. `(interp::Tspline)`
indicates that the parameter is of type `Tspline`.

```@example callable
prob = ODEProblem(sys, [x => 0.0], (0.0, 1.0), [interp => spline])
solve(prob)
```

Note that the the following will not work:

```julia
ODEProblem(
sys; [x => 0.0], (0.0, 1.0), [interp => LinearInterpolation(0.0:0.1:1.0, 0.0:0.1:1.0)])
```

Since the type of the spline doesn't match.
4 changes: 2 additions & 2 deletions ext/MTKBifurcationKitExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ function BifurcationKit.BifurcationProblem(nsys::NonlinearSystem,
# If the plot var is a normal state.
if any(isequal(plot_var, var) for var in unknowns(nsys))
plot_idx = findfirst(isequal(plot_var), unknowns(nsys))
record_from_solution = (x, p) -> x[plot_idx]
record_from_solution = (x, p; k...) -> x[plot_idx]

# If the plot var is an observed state.
elseif any(isequal(plot_var, eq.lhs) for eq in observed(nsys))
Expand All @@ -132,7 +132,7 @@ function BifurcationKit.BifurcationProblem(nsys::NonlinearSystem,
return BifurcationKit.BifurcationProblem(F,
u0_bif_vals,
p_vals,
(@lens _[bif_idx]),
(BifurcationKit.@optic _[bif_idx]),
args...;
record_from_solution = record_from_solution,
J = J,
Expand Down
Loading

0 comments on commit 088f652

Please sign in to comment.