-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
merged develop into resummino, preparing for 2.3.3
- Loading branch information
Showing
28 changed files
with
1,643 additions
and
163 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# How To: Use a combinations matrix to keep track of combinabilities" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Preparations" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Set up the path to SModelS installation folder\n", | ||
"import sys; sys.path.append(\".\"); import smodels_paths" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Import those parts of smodels that are needed for this exercise\n", | ||
"from smodels.tools.physicsUnits import GeV\n", | ||
"from smodels.experiment.databaseObj import Database\n", | ||
"from smodels.theory.theoryPrediction import theoryPredictionsFor, TheoryPredictionsCombiner\n", | ||
"from smodels.theory import decomposer\n", | ||
"from smodels.tools.physicsUnits import fb\n", | ||
"from smodels.particlesLoader import BSMList\n", | ||
"from smodels.share.models.SMparticles import SMList\n", | ||
"from smodels.theory.model import Model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# a combinations matrix is just a dictionary with combinable analyses as both keys and values.\n", | ||
"# we assume symmetricity! (if A is combinable with B, then B is combinable with A)\n", | ||
"# Also, CMS results are automatically assumed to be combinable with ATLAS results,\n", | ||
"# and 8 TeV with 13 TeV results.\n", | ||
"combinationsmatrix = { \"ATLAS-SUSY-2018-41\": [ \"ATLAS-SUSY-2019-08\"]} \n", | ||
"# also define a list of analyses we are interested in\n", | ||
"analyses = [ \"CMS-SUS-21-002\", \"ATLAS-SUSY-2018-41\", \"ATLAS-SUSY-2019-08\", \"CMS-SUS-20-004\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"here is a visualisation of the combinations matrix for the analyses under consideration:" | ||
] | ||
}, | ||
{ | ||
"attachments": { | ||
"matrix-2.png": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUgAAAFJCAMAAADOlkSkAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAABhlBMVEX///+AgID/AAAyzTHw8PCxsbGOjo6Dg4ORkZGwsLDr6+vf39+NjY3+/v7Ly8ufn5/4+Pi3t7ePj4+MjIympqbs7OzIyMiUlJSEhISJiYmenp7Y2Njb29ubm5u/v7/c3NydnZ2Hh4eGhoaWlpbDw8P8/Py6urqVlZW2trb7+/uvr6+BgYH6+vr5+fna2tr29va0tLSSkpKQkJC+vr6Kioru7u7l5eWrq6ucnJysrKzd3d3v7+/i4uLk5OTMzMzR0dHn5+fKysrPz8/p6enU1NT39/ejo6PV1dWzs7PNzc2goKDh4eGTk5Ourq69vb3q6urAwMCqqqrt7e3Z2dmLi4u8vLyioqKampqtra3T09Onp6fHx8eFhYWCgoL09PS5ubmZmZnExMT19fW7u7uysrKXl5fy8vLS0tL9/f3j4+Pe3t6YmJjOzs7GxsbQ0NDm5uakpKShoaHg4ODx8fHCwsLW1talpaXz8/PBwcGIiIjo6OjX19e4uLipqanFxcWoqKjJycm1tbUKppV5AAAAAWJLR0QAiAUdSAAAAAlwSFlzAAACTwAAAk8B95E4kAAAAAd0SU1FB+cGFA4pGiQU/2kAAAAQY2FOdgAAAcIAAAHCAAAAMwAAAGKPTEX/AAASGUlEQVR42u2d/T/bXhvHr9w3qqjWQ6eM0vqWVdB56mg9lLIq1k4V39FSNtQwzKZjw/zn90lS9bDdr9c5k8xpc71/WNr002jey8NJcq4EgDsEFv7DxH+146mtoUgUiSJRJIpEkSgSRaJIFIki+QJFoki+QJEoki9QJIrkCxSJIvmiIEUWFZcYSo1l5UKFibyrFMwAlqpqQ02tNRt4Vmerb3hO5r5RetdkB2hucThb/1E+dbW120peWADcHe1iR26qncUOh7GLvGhsNbR3A3he9th6+1wFLNLab+4e8La9KhdKmsnbwRIicqjd5x/uG1ECo86xgcD4xB2RQUNfWdlkn/Lx1OuQtbxnCKBrOjxzK9JYOjs894ZM3hCJvjVEITjfHVuILxawyKVlk+yjXFj8l8y38wUR6Xh3J7AyfTP3NyJX6x5OZDIhT+RVTqQnuUAWXHEN1lPkXcsLZezGzRcLUOSmkJVWLpQlLLBofE9EznV03iY+bG0/ELmTGHkwlXAF3BfpE9wAabEbWt6Td/ZlZWykpXBF7gqBG5Fuc9hUUi6J/Bg3tETKsomiPaH15ce7ItNDQsnQWPp2Ip7qtw9E7jikf/v3oeeADMer5ZEDjk+FJXIzelfkYU7kfoOv1ySJBHezfc/QCEeJxBGAyXtwJNjv7mxgYLQjcWz6nEgkPpN3nQ2v07cix8jYot+JXKsrhsIS+X9WbbclYe4DWSTB9LoBTmKxE+Xdl6QbnJPSq7oDZcyw8LEzFouRbYB7qSG7JZBFWsjY9G9Wbc/WfLqARcJxbmfjhjdCLCcSXqTupL4KFkhJTjy2hezqLDxXXriPmixwR6TyqbSz8Uk7G8mhtLOZStW6cpMrRJFl9ebGgcP3rySRbg/IIs37gYGJhF0JTP+z62+sI2MnnPuxkdO6NIy/+DgwUlu/KX/sqi2NZjIZsrBFA69rA7HsZI09s8N1cvOnr+wbaf5Ylpv8JFbAIsFvrDD0Gq2SSAlJ5Lems0Tdl+yKOPk6bqieXiOv9vcSFUNkXfcOkfb6SiD7dWVu/QDV0vBmee7KNcjb5QZ5uRIrZJFPAYpEkXyBIlEkX6BIFMkXKBJF8gWKRJF8gSJRJF+gSBTJFygSRfIFilQJJjVM1gUUiSJRJIpEkSgSRaJIFIkiUSSKRJEoEkWiSBT55KBIFMkXKBJF8kVBilSrOhZiS7aKjZupPqyOlZIpoayARapWHeuaqz2fTOxnJ/uwOpaweFTQIlWrjl1IeoisVmXEb6pjZ3uChSxSverYSJM8lS55xK8ldJbSz/5CE3m/qDNwI/KR1bEfVsirqDAgj/m1qNO4DgUn8i7qVcfeiPx9dez3dndhi1SvOvZm1f59dWyVIIqiIP4oWJHqVcfKO5vI3Z3N3erYTDAYbBaeZwpXpGrVsa65lfPQbfPnQXWsREGv2ipWx8aWDBX/3Ez1YXWsDkQ+BSgSRfIFikSRfIEiUSRfoEgUyRcoEkXyBYpEkXyBIlEkX6BIFMkXGs6thtaf2hqKRJEoEkWiSBSJIlEkikSRKJIvUCSK5AsUiSL5AkWiSL5AkSiSL/JXZEisAnP22x3ZihmCq79ffhDX3SpNsF7EbaVv0mCX6j2gUcgVeWbOKskId51c4/FlL1HTIRUprF0k+tfTAJ9P40K59Mlug7Omz3Tj7LLEdiyVhy6kEjXGqbwXebre7/JkMl8FfyYzdSsyZG76Tgb3qjRdvVfegeYPrjsib4o8PzmLABZ75Pq6o7HoSNMgeTHT5G2Ok+92RyZlkSeOtlhzyU2Z7CfbzvlVjwtihrcDs3Md+S4yk5jakoxlSxdyIk8rV6V6rXtVmgEhWwxzKzJX5Fl7BIeG2Vx0RFiDoBAEGD2TSiDcsshK6SGIP2uyi2RqnSzQtq8wmSBvNtrzXeTlFWys/CoyY9vM2NbgfpXmiVhpeiAyV+S5fTa6V3Ub9SXdEI6DVPgRzYl81kP+CWdrEt2i9KfMbTCQ3DFlBn/ku8jWSSgyrN2I3LwReXkEcLwKD6o0DwxnRweeuyJvizw/iT23hbPuZSPZVm6RV53Cx5zIc3E0PdAqDCvm5VLHebJK++qTwlU6z0V6nWTuG1Z/WSJbP5FlRxJxv0rTM1lVUbN9R+RNkSeh4icUkdQYeZme37P8RiTsn4nOiLArx3Iit0vfBhrbX+S5yGu5onLroUivNFoUAsrM3VZpEqb6++BA3nK+cyofS0WehOpKSJMUMWjqqJPKwX5Ztckn2+5GISPHcqt2RPq2T+zKa5Gu+tFgMDiSDDwQeX1KRgePshu9XJWmsrD+gOc2sn5DWyo7RinyrK7MvjUVl8qVs/LOJnxnZyNjbILbnU0X2dn8mIHbsvh8FRlKyPqOq3IixwMEd/2YvNnrd92r0vRefLdGF8m66po7HYntO8fuFXnmRE7372YyGdIKnRn0+qTmT1dgRAgHiPuf58H3uV37J9u74EWpC3zCQWx27zi/V+3TC/nX/+x33YiUCSXl9rEn+f1elebadV3ibPAreVU0VJHYm4B7RZ45kco0yuUGeb3UIFceakriQ2e2ltyiCZcVhhmpQT62lah5k8lvkfyBIlEkX6BIFMkXKBJF8gWKRJF8gSJRJF+gSBTJFygSRfIFikSRfIEi+RepnXXhqa2hSBSJIlEkikSRKBJFosinFogiUSSKRJEoEkWiSBSJIlEkiuQAdpF/s6hzuMHZP190a21F+nPujnaxowBE/sWiTsvZS6u3xZyTNnok/bmu6fBMAYj8m0WdI8ImKDWcMrGS7eyfe1UAIv9mUaflbCM9dXWRjaSbxqCARN4v6gRNizohUC0KLZZsxn4BBSTyQVHnpqZFnV2pl4efG1ZAnpi3YrOQRP7Vos5wNdkyxISoPLFV5QGdF4Uh8u8WdT7rlc0G5dSm9BeEyqLCEPl3izqjhnXr4dLcnYcdy/9v0cDr2kAsv0X+5aLOxiZn/4oVHoislj4157dI/nhqgSgSRaJIFIkiUSSKRJEoEkWiSA5AkSgSRaJIFIkiUSSKRJH5JRJBEARBEATRlM7Ox0+jUFlfo4pNGVvbTFWiuEQXV4jNPPXc/SnpSHuD1BEpI1KErTLJbquVIlxcd9ly0fqxPGVk+DkBmp/BJfb4ZcTxwQQZmsMwQZQP2ESBZnZrhslEmwFmKyjCxiwreSuytBtgoG4oTbVEpk6jfr8/6fP7KcIJP5iS52TqToqweDwkc5S3Im3SY4TW9q6KaOYgHZkbBkhGqaa8/AXe1X8DONijCLfuK8P8XbV75J6vntQg3RzM9rS5KEUuGJwGX6n5WNyhCHe8VIbR3qcW8qdcv5IHU8uUi4LF2C7SiYSB0ABsR9Y/0mTded9K8igdpcFSTvuN71Us7Rnk8aS/vzca339P039j/uSpf/MjKKtq6u1tqipTPRzrsc28ejVj64lRhJtlkuHm5qf28ac0Glrs4+P2BhvNHDCFjy/kp2N1XSxRhLMtVIGqhcolrW+V4bdWtcO27NY3aKMIr5xKZZiU7QEuMWRX0zKa2WUKl0wqw3clNL9jtPpdfotszZY491EtkSzhS1tbcyDQ3JY4oPohscFXnnwW2WhbXlxdXWyi20ayhOHTclIQksufKH9J2l5C20Llkth6w9xcwzrN+RzGMIBre9vF8FO8q56ntsEtO10M4Vn3U//cR7HZODHRuKlFmOAcYPglTGHe6OwQk/F4MmmkOdhlCrO7yWuRxXM+cgyX9tUVqx1md5PXIs92leHwmdphmSKGI+383kaeKY81pxTJEib4d0eYzhSVRU1P7eOPKe7pJi0UV/fcB7XDcFkh3W9icJgmezLjnO9aEcR2mjMcXNJpTIpnZyLlzoYlbC8ZD7f2NRptsxTh+ZbQRYN5wL90QRHmlCnfzo5vSv1whQ9gwOGC9w0U4f5DmBKI8cP4U+t4FCcsmybasLQPTiczEEzQhGMkGyCHTo6ndvEoNGmkmBcBRusBzutpwteey+prgLbBp3bxKDQRuevonUtOAIwPUYSHz8T6wHJvKd3pEG7Rptm8PfozSD3VLq8FOsM/6a54cAvTqQWmMPL/6PT7GS9Be2hPSDKHuYSuP93EltTG3ppgmTJTL5T87bLCNAcbiUh5NFoecV5ShD9nCdNMmSnMJUz96UpCyjBEcz2L6Qpr/l+OZepPx3SFtSbklhmh6kzJEuYSpv50Syvy0eHU1WuKcG32kmOApgsrU5hLmPrTDcwZBq+uBg11NE3Jz9mbt3bRdM9iCnMJW3+69ELkw4fIAsvZWuTxmMrKy8toz4cwhTnGVKR22GSvl3bF9XYaO0xhLun611nyzURZHsIUbouH/Z2d/nBNm9phLnkxFwr3nrrpykOYwnGfMvT1qx3mkmrp7ucN5i6qhYwp7DxUhoc05SFMYS5JSFeb3EuDZTRumMIXg3KXqGjLvNphLmmXnsgB7qMeGjdM4c0ZoWZvr0Y8punhwhTmkrYjeeCqpdp/sITJkWT4y5cw7bldpjCHpC3ZIU1VHFNYjzD1FaEPb8qdI12f1Q/ziibXbDItoqG4i7LRyRTmF01Edgx6fcspD12jkynML5qIrPGSNXW+PUO1kDGF+UWTbaRTurRq6uihOlfLFOaY8gWGbvCU4ZRcXmwq7qcqqWcJc8mGnfz+JUHoP1c7/OVUGU7TbPaYwlyyFQIYSwx7aq/UDusMhxVgyAgwQnMLD6awjH76cEhuqsMAfpoLg0xhGf10xm+ww4hAjvjKaS5+MYXZ3eS1yGZDu1Pqd1f1r9rhdTeDG6YwnwRX30kXBSsP1Q7XSbe2oS0PYQrrDNeiYZ26oc8U5pK3MqvdVFfvmMIAh6m58VGC+mEOGZSps7Vuqx0mhMWSXoIGYW7xnNLsP9jCJ0fKA0mpYArzzAjVnSdYwqOOlQz1FJnCXBNjuQ5KFWZawgpkcSTs09xTjynMtITl/+Ko3AIqtOig6RfOFI55pW+Yl9/S7OOZwlyidDh2pKiqCZjCK3YAq+3ohXND7bDOqNgFiKQAJtrVDnOMi+UEFmXYUATQ8pby1rBMYS5ZkFbTtwa6viJM4eqP0GnzURZ1MoW5xFwJUC5++Vp3rXa4qnXSGHeRtZWm4JUpzCXS5ZeXpwCNNMdmTGHL0NmcdFvYmS9qh7kk4QdoXQUoojnpzRTWGe07sC0eAuzWqB3WGc8cL/dSZLhxpHZYkOo/RcfyO5qfwRTmk9GraekWwdMhtcONMpNtDprDaKawTtlPaRXmj1PKE7XsYdDivBK/aHrRVP0znfyipcipWoZz70xhDjliWVtpw8oFnvZEHc3t7pnCOsMuc0BXSssU5hKdnX7VDu1Ov5qkpStjX6cqZWcKc4l2p187psnOoyK+JX5XO8wl2p1+LfUBrJZYYLFF7TCXaHf61eYnjfcfAGWqh7lEu9Ov8UMwnZGDcivN4ssU5hLtTr9ezK9VGqYAntNsUJnCOsPaKyZXyfDihdphveEKyIcpXqoSbKYwj8zkUDsso1HdLYcI1VXvFdQOy+inM37loKOYukaaKSyjH5FkOx+pLrXT3hKAKQz6EkkOdD+aRdo7urOFdbSNJHTtm51vaB8pxRQGbepu+cT3r3NmgrYPFUtYu7pbLimpjlhdMmqHdVZ3K93WVoLuTrgsYY3rbnmjPIfaYY3rbnnDOmSRBlNDNE/kYQprXHfLG8bsQcoizfPQmMLa1d1ySc/N/QZL1Q5rV3fLJYbsYQrVxokpfEP6uVZhrijJPkCmkaavCFNY4fxH3KBNmDOKs2fEZqgeMMkSJmw+2xNPxygPKJnC/HESbwqdByab+mlu5MwUTj+/si3tUz4ymynMJ9YlqYm9RPekZ5ZwfPBZhvoh7kxhXvGMjNCf4KcP98+MeqjdMIV1hitUazsdo3TDFNYfmctWoXbHokFYf3iv6+lbNExh3eGiqpf4k7DO0NnD07QDRaoEilQJFPlImrOM07hhCusMQWB5LiJLmGPYjiiY0tqFeYStMx1d2mjRKqwzxDWtwjpDYHHDFNYZwonLRd0tgymsM5ROGRJqh3WG8JWhWwZTWGfkNns0Fa9MYZ2RdXNeFVc7rDNmpuRLrIbjn2qH9YZ0ibVBHNEgrC9+xPc2TmgvDDKFdYbYZgHqK6xMYZ0RqnVehNyUbpjCuiNz2eoUw5THKkxh/eG9rne+0iSsO1yh2seH/wdH3qV5AGOLtAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0wNi0yMFQxNDo0MToyNSswMDowMG606+AAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMDYtMjBUMTQ6NDE6MjUrMDA6MDAf6VNcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAAAElFTkSuQmCC" | ||
} | ||
}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"![matrix-2.png](attachment:matrix-2.png)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"we have selected 4 analyses\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"## Load the official database:\n", | ||
"db = Database(\"official\", combinationsmatrix=combinationsmatrix)\n", | ||
"results = db.getExpResults(analysisIDs=analyses, dataTypes = [ \"efficiencyMap\"])\n", | ||
"print ( f\"we have selected {len(results)} analyses\" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"['ATLAS-SUSY-2018-41',\n", | ||
" 'ATLAS-SUSY-2019-08',\n", | ||
" 'CMS-SUS-20-004',\n", | ||
" 'CMS-SUS-21-002']" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"[ x.globalInfo.id for x in results ]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# the theory we will be using\n", | ||
"inputFile = \"inputFiles/slha/ew_ymi2l51r.slha\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# prepare the model\n", | ||
"model = Model(BSMparticles=BSMList, SMparticles=SMList)\n", | ||
"model.updateParticles(inputFile=inputFile)\n", | ||
"# obtain the decomposed model\n", | ||
"toplist = decomposer.decompose(model,sigmacut=0.*fb)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## run SModelS" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# get the predictions\n", | ||
"predictions = list ( theoryPredictionsFor(results, toplist, combinedResults=True ) )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[('ATLAS-SUSY-2018-41', 'r_exp=', 0.869),\n", | ||
" ('ATLAS-SUSY-2019-08', 'r_exp=', 0.961),\n", | ||
" ('CMS-SUS-21-002', 'r_exp=', 1.158)]" | ||
] | ||
}, | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# let's have a quick look at the predictions, and the (expected) r-values\n", | ||
"[ (x.dataset.globalInfo.id, \"r_exp=\", round(x.getRValue(expected=True),3)) for x in predictions ]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"can I combine ATLAS-SUSY-2018-41 with ATLAS-SUSY-2019-08? yes\n", | ||
"can I combine ATLAS-SUSY-2018-41 with CMS-SUS-21-002? yes\n", | ||
"can I combine ATLAS-SUSY-2019-08 with CMS-SUS-21-002? yes\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"for i,pr1 in enumerate(predictions[:-1]):\n", | ||
" id1 = pr1.dataset.globalInfo.id\n", | ||
" for pr2 in predictions[i+1:]:\n", | ||
" id2 = pr2.dataset.globalInfo.id\n", | ||
" combinable = pr1.dataset.isCombinableWith(pr2.dataset)\n", | ||
" print ( f\"can I combine {id1} with {id2}? {'yes' if combinable else 'no'}\" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## combine!" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# given [10] from above, we are allowed to combine the three analyses listed below\n", | ||
"analyses = [ \"CMS-SUS-21-002\", \"ATLAS-SUSY-2018-41\", \"ATLAS-SUSY-2019-08\"]\n", | ||
"combiner = TheoryPredictionsCombiner.selectResultsFrom ( predictions, analyses )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"1.674" | ||
] | ||
}, | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# the combined expected r value must be above the individual expected r-values\n", | ||
"round(combiner.getRValue(expected=True),3)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |
Oops, something went wrong.