Skip to content

Rose-STL-Lab/UCSD-OpenCap-Fitness-Dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UCSD OpenCap Fitness Dataset

The repository contains information about the MCS dataset, which is used for sports analytics. It provides tools to convert motion capture data from .trc format to SMPL format. Additionally, it includes rendering capabilities and analysis functionalities.

Tasks

  • Remove SMPLLoader
  • Add docs using MKLdocsString
  • Reaplace convert command to merge images (raises error when os.system is called. )
  • Main installation script to install convert and other libraries
  • Change delimiter for OpenCAP loader. make it compatible for linux and windows.

Dataset Download links

To download the dataset use the following links:

Steps to re-create the dataset

python3 src/retarget2smpl.py -f 
python3 src/temporal_segmentation.py
python3 src/generate_data_pkl.py

OpenCap File Structure

.
├── full_data
│ ├── OpenCapData_015b7571-9f0b-4db4-a854-68e57640640d
│ │ ├── CalibrationImages
│ │ │ ├── calib_imgCam{%d}.jpg
│ │ ├── MarkerData
│ │ │ ├── BAP{%1d}.trc
│ │ ├── OpenSimData
│ │ │ ├── Kinematics
│ │ │ │ ├── {%class}{%d}.mot
│ │ │ └── Model
│ │ │     ├── Geometry
│ │ │     └── LaiArnoldModified2017_poly_withArms_weldHand_scaled.osim 
│ │ ├── README.txt
│ │ ├── sessionMetadata.yaml
│ │ └── Videos
│ │     ├── Cam%d
│ │     │ └── cameraIntrinsicsExtrinsics.pickle
│ │     └── mappingCamDevice.pickle

Opencap processing: Library to process files

Code Structure

src
├── analyze_dtw_score.py // Script for analyzing Dynamic Time Warping (DTW) scores
├── dataloader.py // Contains code for loading and preprocessing data
├── evaluation
│   └── foot_sliding_checker.py // Script for checking foot sliding in animations
├── generate_data_pkl.py // Script for generating pickle files from data
├── HumanML3D // Convert dataset to HumanML3D Format
│   ├── rots_to_smpl.py // Script for converting rotations to SMPL format
├── meters.py // Contains code for measuring and logging training progress
├── pose_reconstruction.py // Contains code for reconstructing poses from data
├── renderer.py // Contains code for rendering makerker data(.trc), smpl mesh and skeleton, camera location
├── retarget2smpl.py // Script for retargeting .trc to the SMPL model
├── smpl_loader.py // Contains code for loading SMPL models
├── temporal_segmentation.py // Detects start stop cycle for each sample
├── tests.py // Contains unit tests for the project
└── utils.py // Contains constants and logging functions used across the project

Note:- Each python file can be called from any directory.

// All commands that should work only any system
python retarget2smpl.py 
python src/retarget2smpl.py
python UCSD-OpenCap-Fitness-Dataset/src/retarget2smpl.py  
python src/opencap_reconstruction_render.py <subject-path>  <mot-path>  <save-path>

0. General Setup

  • Clone repo

        git clone --recursive https://github.com/Rose-STL-Lab/UCSD-OpenCap-Fitness-Dataset.git
        cd UCSD-OpenCap-Fitness-Dataset
    
  • Creating environment

    conda create --name bitte -f environment.yml
    
    
  • Pip packages

    pip install polyscope opensim ffmpeg glfw 
    
    
  • Raise an issue if you are having trouble installing any of the above packages

1. Visualization

Rendering

Renders a video of the skeleton video using polyscope

  • Compare <= 3 .mot files

    • For OpenCap

       python src/plot_3.py MCS_DATA/Data/fb6e8f87-a1cc-48b4-8217-4e8b160602bf/MarkerData/SQT01.trc
      
    • For Simulation data

      python src/plot_3.py  MCS_DATA/Data/<subject-path>/OpenSimData/Dynamics/SQT01_segment_?/kinematics_activations_SQT01_segment_?_muscle_driven.mot 
      
      
  • Plot 5 timesteps

python src/plot_series.py  MCS_DATA/Data/015b7571-9f0b-4db4-a854-68e57640640d/OpenSimData/Dynamics/SQT01_segment_2/kinematics_activations_SQT01_segment_2_muscle_driven.mot  
  • Plot series in perspective view with ground.
python src/plot_main_diagram.py  MCS_DATA/LIMO/FinalFinalHigh/mot_visualization/latents_subject_run_d66330dc-7884-4915-9dbb-0520932294c4/entry_19_FinalFinalHigh.mot render/bige_d66330dc-7884-4915-9dbb-0520932294c4_images.mp4

python src/plot_main_diagram.py MCS_DATA/mdm_baseline/015b7571-9f0b-4db4-a854-68e57640640d/results_5_radians.mot
  • Compare MoCap with any mot file
python3 python src/opencap_reconstruction_render.py <subject-path>  <mot-path>  <save-path> # Specific trc file
Running on a Remote Server / North Servr / Linux Containers ?

Polyscope has a lot of trouble installing on the remote server. Below are a few steps that can be taken for fix common errors.

  1. Use ssh -X to login

  2. Set export DISPLAY=:99.0

  3. Xvfb :99 -screen 0 1024x768x24 > /dev/null 2>&1 &

  4. Fix for error:

        libGL error: MESA-LOADER: failed to open swrast: /home/ubuntu/.conda/envs/T2M-GPT/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.29' not found (required by /usr/lib/dri/swrast_dri.so) (search paths /usr/lib/x86_64-linux-gnu/dri:\$${ORIGIN}/dri:/usr/lib/dri, suffix _dri)
        libGL error: failed to load driver: swrast
        GLFW emitted error: GLX: Failed to create context: GLXBadFBConfig
    
        rm /home/ubuntu/.conda/envs/T2M-GPT/bin/../lib/libstdc++.so.6
        ln -s /usr/lib/x86_64-linux-gnu/libstdc++.so.6  /home/ubuntu/.conda/envs/T2M-GPT/bin/../lib/libstdc++.so.6 
    
  5. Fix for GLFW emitted error: The GLFW library is not initialized

        pip install glfw
    
  6. Fix for error DISPLAY not found:

        export DISPLAY=:99.0
    
  7. Segfault:

        export DISPLAY=:99.0
    
  8. Fix for GLFW emitted error: X11: Failed to open display :99.0

        Xvfb :99 -screen 0 1024x768x24 > /dev/null 2>&1 &
    

2. Retargetting

To retarget .trc file to SMPL format

python3 src/retarget2smpl.py # For complete dataset

Or

python3 src/retarget2smpl.py  -f --file <sample-filepath> # Specific trc file 

<sample-filepath> is the path to the trc file containing the xyz co-ordinates of each joint to plot

-f forces a re-run on retargetting even if pkl file containg smpl data is already present.

Click to download extracted SMPL data from TRC file

3. Temporal Segmentation

Installation

pip install 
  • Raise an issue if you are having trouble installing any of the above packages
Convert Installation details - Linux
sudo apt install imagemagick

python src/temporal_segmentation.py 

3. Motion Aggregration

  • To train the generative model we use the 263 representation proposed by Guo et al. ()

MDM Format

Store the retargeted smpl data into a single .pkl file for analysis and training.
```
    python src/generate_data_pkl.py
```

HumanML3D format (263 dim representation):

The data from pkl file is converted into 263 HumanML3D format for generation and classifier purposes. 
```
    python src/HumanML3D/rots_to_smpl.py
```

Each sample consists of
- root_rot_velocity $ \in R^{seq\_len \times 1}$
- root_linear_velocity $\in R^{seq\_len \times 2}$
- root_y $\in R^{seq\_len \times 1}$
- ric_data $ \in R^{seq\_len \times 3(joint\_num - 1)}$
- rot_data $\in R^{seq\_len \times 6(joint\_num - 1)} $
- local_velocity $\in R^{seq\_len \times 3joint\_num} $
- foot contact $\in R^{seq\_len \times 4} $

Here: 1 + 2 + 1 + 21\*3 + 21\*6 + 22\*3 + 4 = 263  
$seq\_len$ is the number of frame

$joint\_num=22$ is the number of joints used my HumanML3D SMPL representation. The last 2 joints (left and right hand) are discarded.    

4. Simulation

Open In Colab

To run locally

OpenCap installation details

Multiple modules need to be installed

Muscle forces reaction data analysis

    Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., Delp, S.L. (2016) Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Transactions on Biomedical Engineering

Additional information about the model can be found on the links below:

Muscular-Skeleton Model information:

Relevant papers:

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011462

Developer Utils

Syncthing

  • To sync database across different systems. Syncthing uses a DEVICE-ID (created during installation) to transfer files between servers.

  • Only drawback is that it requires GUI to access both your system and server.

  • Installation instructions: here

Commands for the remote server

syncthing

port-forwarding to access gui of the remote server

ssh -L 9000:127.0.0.1:8384 [email protected] -i ~/Desktop/panini

To sync a folder. First Add folder on the and add the name and path to the folder to sync Then

  1. open the folder box
  2. click Edit
  3. Go to tab Sharing
  4. Select server to sync with

Kubernetes syncthing setup manual steps:

  1. open syncthing everywhere
  2. add devices everywhere
  3. folder -> edit everywhere

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published