-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* ml solution transparency
- Loading branch information
Showing
7 changed files
with
346 additions
and
64 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,3 +5,5 @@ | |
|
||
# simplified | ||
from cat2cat.cat2cat import cat2cat | ||
|
||
from cat2cat.cat2cat_ml import cat2cat_ml_run |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
from pandas import DataFrame, concat | ||
from numpy import repeat, setdiff1d, in1d, sum, NaN, nanmean, isnan, round | ||
|
||
from sklearn.model_selection import train_test_split | ||
|
||
from cat2cat.mappings import get_mappings | ||
from cat2cat.dataclass import cat2cat_mappings, cat2cat_ml | ||
|
||
from typing import Any, Dict | ||
|
||
__all__ = ["cat2cat_ml_run"] | ||
|
||
|
||
class cat2cat_ml_run_results: | ||
"""The class to represent the results of the cat2cat_ml_run function call | ||
Args: | ||
res (Dict): raw results from the cat2cat_ml_run function call | ||
mappings (cat2cat_mappings): dataclass with mappings related arguments. | ||
Please check out the `cat2cat.dataclass.cat2cat_mappings` for more information. | ||
ml (cat2cat_ml): dataclass with ml related arguments. | ||
Please check out the `cat2cat.dataclass.cat2cat_ml` for more information. | ||
kwargs (Dict): additional arguments passed to the `cat2cat_ml_run` function. | ||
Returns: | ||
cat2cat_ml_run_results class instance with the following attributes: | ||
res (Dict): raw results from the cat2cat_ml_run function call | ||
mean_acc (Dict): mean accuracy for each model | ||
percent_failed (Dict): percent of failed models for each model | ||
percent_better (Dict): percent of better models over most frequent category solution for each model | ||
mappings (cat2cat_mappings): initial mappings dataclass with mappings related arguments. | ||
ml (cat2cat_ml): initial ml dataclass with ml related arguments. | ||
Methods: | ||
get_raw: get raw results | ||
""" | ||
|
||
def __init__( | ||
self, res: Dict, mappings: cat2cat_mappings, ml: cat2cat_ml, kwargs: Dict | ||
) -> None: | ||
self.res = res | ||
self.mappings = mappings | ||
self.ml = ml | ||
self.kwargs = kwargs | ||
self.models_names = [type(m).__name__ for m in self.ml.models] | ||
|
||
mean_acc = dict() | ||
percent_failed = dict() | ||
percent_better = dict() | ||
|
||
mean_acc["naive"] = round( | ||
nanmean( | ||
[self.res.get(g, {"naive": NaN}).get("naive") for g in self.res.keys()] | ||
), | ||
3, | ||
) | ||
mean_acc["most_freq"] = round( | ||
nanmean( | ||
[self.res.get(g, {"freq": NaN}).get("freq") for g in self.res.keys()] | ||
), | ||
2, | ||
) | ||
for m in self.models_names: | ||
vals = [self.res.get(g, {}).get(m, NaN) for g in self.res.keys()] | ||
mean_acc[m] = round(nanmean(vals), 3) | ||
percent_failed[m] = round(sum(isnan(vals)) / len(vals) * 100, 3) | ||
percent_better[m] = round( | ||
sum(vals > mean_acc["most_freq"]) / len(vals) * 100, 3 | ||
) | ||
|
||
self.mean_acc = mean_acc | ||
self.percent_failed = percent_failed | ||
self.percent_better = percent_better | ||
|
||
def get_raw(self) -> Dict: | ||
"""Get raw results""" | ||
return self.res | ||
|
||
def __repr__(self) -> str: | ||
res = "" | ||
for k, v in self.mean_acc.items(): | ||
res += "Average Accuracy {}: {}".format(k, v) + "\n" | ||
res += "\n" | ||
for k, v in self.percent_failed.items(): | ||
res += "Percent of failed {}: {}".format(k, v) + "\n" | ||
res += "\n" | ||
for k, v in self.percent_better.items(): | ||
res += ( | ||
"Percent of better {} over most frequent category solution: {}".format( | ||
k, v | ||
) | ||
+ "\n" | ||
) | ||
res += "\n" | ||
res += "Features: {}".format(self.ml.features) + "\n" | ||
res += "Test sample size: {}".format(self.kwargs.get("test_size", 0.2)) + "\n" | ||
return res | ||
|
||
|
||
def cat2cat_ml_run( | ||
mappings: cat2cat_mappings, ml: cat2cat_ml, **kwargs: Any | ||
) -> cat2cat_ml_run_results: | ||
"""Automatic mapping in a panel dataset - cat2cat procedure | ||
Args: | ||
mappings (cat2cat_mappings): dataclass with mappings related arguments. | ||
Please check out the `cat2cat.dataclass.cat2cat_mappings` for more information. | ||
ml (Optional[cat2cat_ml]): dataclass with ml related arguments. | ||
Please check out the `cat2cat.dataclass.cat2cat_ml` for more information. | ||
**kwargs: additional arguments passed to the `cat2cat_ml_run` function. | ||
min_match (float): minimum share of categories from the base period that have to be matched in the mapping table. Between 0 and 1. Default 0.8. | ||
test_size (float): share of the data used for testing. Between 0 and 1. Default 0.2. | ||
split_seed (int): random seed for the train_test_split function. Default 42. | ||
Returns: | ||
cat2cat_ml_run_class | ||
Note: | ||
Please check out the `cat2cat.cat2cat.cat2cat` for more information. | ||
>>> from cat2cat import cat2cat | ||
>>> from cat2cat.cat2cat_ml import cat2cat_ml_run | ||
>>> from cat2cat.dataclass import cat2cat_data, cat2cat_mappings, cat2cat_ml | ||
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis | ||
>>> from sklearn.tree import DecisionTreeClassifier | ||
>>> from cat2cat.datasets import load_trans, load_occup | ||
>>> trans = load_trans() | ||
>>> occup = load_occup() | ||
>>> o_old = occup.loc[occup.year == 2008, :].copy() | ||
>>> o_new = occup.loc[occup.year == 2010, :].copy() | ||
>>> mappings = cat2cat_mappings(trans = trans, direction = "forward") | ||
>>> ml = cat2cat_ml( | ||
... occup.loc[occup.year <= 2008, :].copy(), | ||
... "code", | ||
... ["salary", "age", "edu", "sex"], | ||
... [DecisionTreeClassifier(random_state=1234), LinearDiscriminantAnalysis()] | ||
... ) | ||
>>> cat2cat_ml_run(mappings = mappings, ml = ml) | ||
""" | ||
assert isinstance( | ||
mappings, cat2cat_mappings | ||
), "mappings arg has to be cat2cat_mappings instance" | ||
assert isinstance(ml, cat2cat_ml), "ml arg has to be cat2cat_ml instance" | ||
assert isinstance(kwargs, dict), "kwargs arg has to be a dict" | ||
assert set(kwargs.keys()).issubset( | ||
["min_match", "test_size", "split_seed"] | ||
), "possible kwargs are min_match, split_seed and test_size" | ||
|
||
mapps = get_mappings(mappings.trans) | ||
|
||
if mappings.direction == "forward": | ||
target_name = "new" | ||
base_name = "old" | ||
elif mappings.direction == "backward": | ||
target_name = "old" | ||
base_name = "new" | ||
|
||
mapp = mapps["to_" + base_name] | ||
|
||
cat_var = ml.data[ml.cat_var].values | ||
cat_var_vals = mappings.trans[base_name].unique() | ||
|
||
assert (sum(in1d(cat_var, cat_var_vals)) / len(cat_var)) > kwargs.get( | ||
"min_match", 0.8 | ||
), "The mapping table does not cover all categories in the data. Please check the direction in the mapping table." | ||
|
||
features = ml.features | ||
models = ml.models | ||
models_names = [type(m).__name__ for m in models] | ||
|
||
train_g = { | ||
n: g for n, g in ml.data[list(features) + [ml.cat_var]].groupby(ml.cat_var) | ||
} | ||
|
||
res = dict() | ||
for cat in mapp.keys(): | ||
try: | ||
matched_cat = mapp.get(cat, []) | ||
res[cat] = { | ||
"naive": 1 / len(matched_cat), | ||
"freq": NaN, | ||
} | ||
for m in models_names: | ||
res[cat][m] = NaN | ||
|
||
data_small_g_list = list() | ||
for g in matched_cat: | ||
if g not in train_g.keys(): | ||
continue | ||
data_small_g_list.append(train_g.get(g)) | ||
if len(data_small_g_list) == 0: | ||
continue | ||
|
||
data_small_g = concat([train_g.get(g) for g in matched_cat], axis=0) | ||
|
||
if ( | ||
(data_small_g.shape[0] < 10) | ||
or (len(matched_cat) < 2) | ||
or (sum(in1d(matched_cat, data_small_g[ml.cat_var])) == 1) | ||
): | ||
continue | ||
|
||
X_train, X_test, y_train, y_test = train_test_split( | ||
data_small_g[features], | ||
data_small_g[ml.cat_var], | ||
test_size=kwargs.get("test_size", 0.2), | ||
random_state=kwargs.get("split_seed", 42), | ||
) | ||
|
||
gcounts = y_train.value_counts() | ||
gfreq_max = gcounts.index[0] | ||
res[cat]["freq"] = nanmean(gfreq_max == y_test) | ||
|
||
if (X_test.shape[0] == 0) or (X_train.shape[0] < 5): | ||
continue | ||
|
||
for m in models: | ||
ml_name = str(type(m).__name__) | ||
m.fit(X_train, y_train) # type: ignore | ||
res[cat][ml_name] = m.score(X_test, y_test) # type: ignore | ||
except: | ||
continue | ||
|
||
return cat2cat_ml_run_results(res, mappings, ml, kwargs) | ||
|
||
|
||
def _cat2cat_ml( | ||
ml: cat2cat_ml, mapp: Dict[Any, Any], target_df: DataFrame, cat_var_target: str | ||
) -> None: | ||
"""cat2cat ml optional part""" | ||
for target_cat in list(mapp.keys()): | ||
base_cats = mapp[target_cat] | ||
ml_cat_var = ml.data[ml.cat_var] | ||
if (not any(in1d(base_cats, ml_cat_var.unique()))) or (len(base_cats) == 1): | ||
continue | ||
|
||
target_cat_index = in1d(target_df[cat_var_target].values, target_cat) | ||
ml_cat_index = in1d(ml.data[ml.cat_var].values, base_cats) | ||
|
||
data_ml_train = ml.data.loc[ml_cat_index, :] | ||
data_ml_target = target_df.loc[target_cat_index, :] | ||
|
||
target_cats = data_ml_target["g_new_c2c"] | ||
data_ml_target_uniq = data_ml_target.drop_duplicates( | ||
subset=["index_c2c"] + list(ml.features) | ||
) | ||
index_c2c = data_ml_target_uniq["index_c2c"].values | ||
|
||
for m in ml.models: | ||
ml_name = type(m).__name__ | ||
ml_colname = "wei_" + ml_name + "_c2c" | ||
|
||
try: | ||
m.fit(X=data_ml_train.loc[:, ml.features], y=data_ml_train[ml.cat_var]) | ||
|
||
X_test = data_ml_target_uniq.loc[:, ml.features] | ||
preds = m.predict_proba(X=X_test) | ||
|
||
preds_df = DataFrame(preds) | ||
preds_df.columns = m.classes_ | ||
preds_df[setdiff1d(target_cats.unique(), m.classes_)] = 0 | ||
preds_df["index_c2c"] = index_c2c | ||
preds_df_melt = preds_df.melt(id_vars="index_c2c", var_name="g_new_c2c") | ||
merge_on = ["index_c2c", "g_new_c2c"] | ||
p_order = target_df.loc[target_cat_index, merge_on].merge( | ||
preds_df_melt, on=merge_on, how="left" | ||
) | ||
target_df.loc[target_cat_index, ml_colname] = p_order["value"].values | ||
except: | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.