-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ffba18f
commit 4a809ea
Showing
1 changed file
with
56 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,56 +1,56 @@ | ||
method_grp,method_subgrp,r_links,sas_links,python_links,comparison_links | ||
Summary Statistics,Rounding,[R](R/rounding),[SAS](SAS/rounding),[Python](python/Rounding),[R vs SAS](Comp/r-sas_rounding) | ||
Summary Statistics,Summary statistics,[R](R/summary-stats),[SAS](SAS/summary-stats),[Python](python/Summary_statistics),[R vs SAS](Comp/r-sas-summary-stats) | ||
Summary Statistics,Skewness/Kurtosis,[R](R/summary_skew_kurt),[SAS](SAS/summary_skew_kurt),[Python](python/skewness_kurtosis),[R vs SAS](Comp/r-sas_summary_skew_kurt) | ||
General Linear Models,One Sample t-test,[R](R/ttest_1Sample),[SAS](SAS/ttest_1Sample),[Python](python/one_sample_t_test),[R vs SAS](Comp/r-sas_ttest_1Sample) | ||
General Linear Models,Paired t-test,[R](R/ttest_Paired),[SAS](SAS/ttest_Paired),[Python](python/paired_t_test),[R vs SAS](Comp/r-sas_ttest_Paired) | ||
General Linear Models,Two Sample t-test,[R](R/ttest_2Sample),[SAS](SAS/ttest_2Sample),[Python](python/two_samples_t_test),[R vs SAS](Comp/r-sas_ttest_2Sample) | ||
General Linear Models,ANOVA,[R](R/anova),[SAS](SAS/anova),[Python](python/anova),[R vs SAS](Comp/r-sas_anova) | ||
General Linear Models,ANCOVA,[R](R/ancova),[SAS](SAS/ancova),[Python](python/ancova),[R vs SAS](Comp/r-sas_ancova) | ||
General Linear Models,MANOVA,[R](R/manova),[SAS](SAS/manova),[Python](python/MANOVA),[R vs SAS](Comp/r-sas_manova) | ||
General Linear Models,Linear Regression,[R](R/linear-regression),[SAS](SAS/linear-regression),[Python](python/linear_regression),[R vs SAS](Comp/r-sas_linear-regression) | ||
Generalized Linear Models,Logistic Regression,[R](R/logistic_regr),[SAS](SAS/logistic-regr),[Python](python/logistic_regression),[R vs SAS](Comp/r-sas_logistic-regr) | ||
Generalized Linear Models,Poisson/Negative Binomial Regression,[R](R/count_data_regression),,,[R vs SAS](Comp/r-sas_negbin) | ||
Generalized Linear Models,Categorical Repeated Measures,,,, | ||
Generalized Linear Models,Categorical Multiple Imputation,,,, | ||
Non-parametric Analysis,Wilcoxon signed rank,[R](R/wilcoxonsr_hodges_lehman),[SAS](SAS/wilcoxonsr_HL),,[R vs SAS](Comp/r-sas-wilcoxonsr_HL) | ||
Non-parametric Analysis,Mann-Whitney U/Wilcoxon rank sum,[R](R/nonpara_wilcoxon_ranksum),[SAS](SAS/ranksum),, | ||
Non-parametric Analysis,Kolmogorov-Smirnov test,,,, | ||
Non-parametric Analysis,Kruskall-Wallis test,[R](R/kruskal_wallis),[SAS](SAS/kruskal_wallis),[Python](python/kruskal_wallis),[R vs SAS](Comp/r-sas_kruskalwallis) | ||
Non-parametric Analysis,Friedman test,,,, | ||
Non-parametric Analysis,Jonckheere test,[R](R/jonckheere),[SAS](SAS/jonchkheere_terpstra),,[R vs SAS](Comp/r-sas_jonckheere) | ||
Non-parametric Analysis,Hodges-Lehman Estimator,[R](R/nparestimate),[SAS](SAS/nparestimate),, | ||
Categorical Data Analysis,Binomial test,[R](R/binomial_test),,, | ||
Categorical Data Analysis,McNemar's test,[R](R/mcnemar),[SAS](SAS/mcnemar),,[R vs SAS](Comp/r-sas_mcnemar) | ||
Categorical Data Analysis,Chi-Square Association/Fishers exact,[R](R/association),[SAS](SAS/association),[Python](python/chi-square),[R vs SAS](Comp/r-sas_chi-sq) | ||
Categorical Data Analysis,Cochran Mantel Haenszel,[R](R/cmh),[SAS](SAS/cmh),,[R vs SAS](Comp/r-sas_cmh) | ||
Categorical Data Analysis,Confidence Intervals for proportions,[R](R/ci_for_prop),[SAS](SAS/ci_for_prop),,[R vs SAS](Comp/r-sas_ci_for_prop) | ||
Repeated Measures,Linear Mixed Model (MMRM),[R](R/mmrm),[SAS](SAS/mmrm),,[R vs SAS](Comp/r-sas_mmrm) | ||
Repeated Measures,Linear Mixed Model (degrees of freedom),,,, | ||
Repeated Measures,Generalized Linear Mixed Model (MMRM),,,, | ||
Repeated Measures,Bayesian MMRM,,,, | ||
Multiple Imputation - Continuous Data MAR,MCMC,,,, | ||
Multiple Imputation - Continuous Data MAR,Linear regression,[R](R/mi_mar_regression),,, | ||
Multiple Imputation - Continuous Data MAR,Predictive Mean Matching,[R](R/mi_mar_predictive_mean_match),,, | ||
Multiple Imputation - Continuous Data MNAR,Delta Adjustment/Tipping Point,,,, | ||
Multiple Imputation - Continuous Data MNAR,Reference-Based Imputation/Sequential Methods,,,, | ||
Multiple Imputation - Continuous Data MNAR,Reference-Based Imputation/Joint Modelling,,,, | ||
Correlation,Pearson's/ Spearman's/ Kendall's Rank,[R](R/correlation),[SAS](SAS/correlation),[Python](python/correlation),[R vs SAS](Comp/r-sas_correlation) | ||
Survival Models,Kaplan-Meier Log-rank test and Cox-PH,[R](R/survival),[SAS](SAS/survival),,[R vs SAS](Comp/r-sas_survival) | ||
Survival Models,Accelerated Failure Time,[R](R/Accelerated_Failure_time_model),,, | ||
Survival Models,Non-proportional hazards methods,[R](R/Weighted-log-rank),,, | ||
Survival Models,Cumulative Incidence Functions,[R](R/survival_cif),[SAS](SAS/survival_cif),,[R vs SAS](Comp/r-sas_survival_cif) | ||
Sample size /Power calculations,Superiority Single timepoint,,,, | ||
Sample size /Power calculations,Equivalence Single timepoint,,,, | ||
Sample size /Power calculations,Non-Inferiority Single timepoint,,,, | ||
Sample size /Power calculations,Group sequential designs,[R](R/gsd-tte),,,[East](East/gsd-tte) [East vs R](Comp/r-east_gsd-tte) | ||
Multivariate methods,Clustering,[R](Clustering_Knowhow),,, | ||
Multivariate methods,Factor analysis,,,, | ||
Multivariate methods,PCA,[R](R/PCA_analysis),,, | ||
Multivariate methods,Canonical correlation,,,, | ||
Multivariate methods,PLS,,,, | ||
Causal inference, Propensity score matching,,,, | ||
Causal inference, Propensity score Weighting,,,, | ||
Other Methods,Survey statistics,[R](R/survey-stats-summary),[SAS](SAS/survey-stats-summary),[Python](python/survey-stats-summary),[R vs SAS vs Python](Comp/r-sas-python_survey-stats-summary) | ||
Other Methods,Nearest neighbour,,,, | ||
Other Methods,Machine learning,[R](R/xgboost),,, | ||
method_grp,method_subgrp,r_links,sas_links,python_links,comparison_links | ||
Summary Statistics,Rounding,[R](R/rounding),[SAS](SAS/rounding),[Python](python/Rounding),[R vs SAS](Comp/r-sas_rounding) | ||
Summary Statistics,Summary statistics,[R](R/summary-stats),[SAS](SAS/summary-stats),[Python](python/Summary_statistics),[R vs SAS](Comp/r-sas-summary-stats) | ||
Summary Statistics,Skewness/Kurtosis,[R](R/summary_skew_kurt),[SAS](SAS/summary_skew_kurt),[Python](python/skewness_kurtosis),[R vs SAS](Comp/r-sas_summary_skew_kurt) | ||
General Linear Models,One Sample t-test,[R](R/ttest_1Sample),[SAS](SAS/ttest_1Sample),[Python](python/one_sample_t_test),[R vs SAS](Comp/r-sas_ttest_1Sample) | ||
General Linear Models,Paired t-test,[R](R/ttest_Paired),[SAS](SAS/ttest_Paired),[Python](python/paired_t_test),[R vs SAS](Comp/r-sas_ttest_Paired) | ||
General Linear Models,Two Sample t-test,[R](R/ttest_2Sample),[SAS](SAS/ttest_2Sample),[Python](python/two_samples_t_test),[R vs SAS](Comp/r-sas_ttest_2Sample) | ||
General Linear Models,ANOVA,[R](R/anova),[SAS](SAS/anova),[Python](python/anova),[R vs SAS](Comp/r-sas_anova) | ||
General Linear Models,ANCOVA,[R](R/ancova),[SAS](SAS/ancova),[Python](python/ancova),[R vs SAS](Comp/r-sas_ancova) | ||
General Linear Models,MANOVA,[R](R/manova),[SAS](SAS/manova),[Python](python/MANOVA),[R vs SAS](Comp/r-sas_manova) | ||
General Linear Models,Linear Regression,[R](R/linear-regression),[SAS](SAS/linear-regression),[Python](python/linear_regression),[R vs SAS](Comp/r-sas_linear-regression) | ||
Generalized Linear Models,Logistic Regression,[R](R/logistic_regr),[SAS](SAS/logistic-regr),[Python](python/logistic_regression),[R vs SAS](Comp/r-sas_logistic-regr) | ||
Generalized Linear Models,Poisson/Negative Binomial Regression,[R](R/count_data_regression),,,[R vs SAS](Comp/r-sas_negbin) | ||
Generalized Linear Models,Categorical Repeated Measures,,,, | ||
Generalized Linear Models,Categorical Multiple Imputation,,,, | ||
Non-parametric Analysis,Wilcoxon signed rank,[R](R/wilcoxonsr_hodges_lehman),[SAS](SAS/wilcoxonsr_HL),,[R vs SAS](Comp/r-sas-wilcoxonsr_HL) | ||
Non-parametric Analysis,Mann-Whitney U/Wilcoxon rank sum,[R](R/nonpara_wilcoxon_ranksum),[SAS](SAS/ranksum),, | ||
Non-parametric Analysis,Kolmogorov-Smirnov test,,,, | ||
Non-parametric Analysis,Kruskall-Wallis test,[R](R/kruskal_wallis),[SAS](SAS/kruskal_wallis),[Python](python/kruskal_wallis),[R vs SAS](Comp/r-sas_kruskalwallis) | ||
Non-parametric Analysis,Friedman test,,,, | ||
Non-parametric Analysis,Jonckheere test,[R](R/jonckheere),[SAS](SAS/jonchkheere_terpstra),,[R vs SAS](Comp/r-sas_jonckheere) | ||
Non-parametric Analysis,Hodges-Lehman Estimator,[R](R/nparestimate),[SAS](SAS/nparestimate),, | ||
Categorical Data Analysis,Binomial test,[R](R/binomial_test),,, | ||
Categorical Data Analysis,McNemar's test,[R](R/mcnemar),[SAS](SAS/mcnemar),,[R vs SAS](Comp/r-sas_mcnemar) | ||
Categorical Data Analysis,Chi-Square Association/Fishers exact,[R](R/association),[SAS](SAS/association),[Python](python/chi-square),[R vs SAS](Comp/r-sas_chi-sq) | ||
Categorical Data Analysis,Cochran Mantel Haenszel,[R](R/cmh),[SAS](SAS/cmh),,[R vs SAS](Comp/r-sas_cmh) | ||
Categorical Data Analysis,Confidence Intervals for proportions,[R](R/ci_for_prop),[SAS](SAS/ci_for_prop),,[R vs SAS](Comp/r-sas_ci_for_prop) | ||
Repeated Measures,Linear Mixed Model (MMRM),[R](R/mmrm),[SAS](SAS/mmrm),,[R vs SAS](Comp/r-sas_mmrm) | ||
Repeated Measures,Linear Mixed Model (degrees of freedom),,,, | ||
Repeated Measures,Generalized Linear Mixed Model (MMRM),,,, | ||
Repeated Measures,Bayesian MMRM,,,, | ||
Multiple Imputation - Continuous Data MAR,MCMC,,,, | ||
Multiple Imputation - Continuous Data MAR,Linear regression,[R](R/mi_mar_regression),,, | ||
Multiple Imputation - Continuous Data MAR,Predictive Mean Matching,[R](R/mi_mar_predictive_mean_match),,, | ||
Multiple Imputation - Continuous Data MNAR,Delta Adjustment/Tipping Point,,,, | ||
Multiple Imputation - Continuous Data MNAR,Reference-Based Imputation/Sequential Methods,,,, | ||
Multiple Imputation - Continuous Data MNAR,Reference-Based Imputation/Joint Modelling,,,, | ||
Correlation,Pearson's/ Spearman's/ Kendall's Rank,[R](R/correlation),[SAS](SAS/correlation),[Python](python/correlation),[R vs SAS](Comp/r-sas_correlation) | ||
Survival Models,Kaplan-Meier Log-rank test and Cox-PH,[R](R/survival),[SAS](SAS/survival),,[R vs SAS](Comp/r-sas_survival) | ||
Survival Models,Accelerated Failure Time,[R](R/Accelerated_Failure_time_model),,, | ||
Survival Models,Non-proportional hazards methods,[R](R/Weighted-log-rank),,, | ||
Survival Models,Cumulative Incidence Functions,[R](R/survival_cif),[SAS](SAS/survival_cif),,[R vs SAS](Comp/r-sas_survival_cif) | ||
Sample size /Power calculations,Superiority Single timepoint,,,, | ||
Sample size /Power calculations,Equivalence Single timepoint,,,, | ||
Sample size /Power calculations,Non-Inferiority Single timepoint,,,, | ||
Sample size /Power calculations,Group sequential designs,[R](R/gsd-tte),[East](East/gsd-tte),,[East vs R](Comp/r-east_gsd-tte) | ||
Multivariate methods,Clustering,[R](Clustering_Knowhow),,, | ||
Multivariate methods,Factor analysis,,,, | ||
Multivariate methods,PCA,[R](R/PCA_analysis),,, | ||
Multivariate methods,Canonical correlation,,,, | ||
Multivariate methods,PLS,,,, | ||
Causal inference, Propensity score matching,,,, | ||
Causal inference, Propensity score Weighting,,,, | ||
Other Methods,Survey statistics,[R](R/survey-stats-summary),[SAS](SAS/survey-stats-summary),[Python](python/survey-stats-summary),[R vs SAS vs Python](Comp/r-sas-python_survey-stats-summary) | ||
Other Methods,Nearest neighbour,,,, | ||
Other Methods,Machine learning,[R](R/xgboost),,, |